By a theorem of Wahl, the canonically embedded curves which are hyperplane section of K3 surfaces are distinguished by the non-surjectivity of their Wahl map. In this paper we address the problem of distinguishing hyperplane sections of abelian surfaces. The somewhat surprising result is that the Wahl map of such curves is (tendentially) surjective, but their second Wahl map has corank at least 2 (in fact a more precise result is proved).

Colombo, E., Frediani, P., Pareschi, G. (2012). Hyperplane sections of abelian surfaces. JOURNAL OF ALGEBRAIC GEOMETRY, 21(1), 183-200 [10.1090/S1056-3911-2011-00556-0].

Hyperplane sections of abelian surfaces

PARESCHI, GIUSEPPE
2012-01-01

Abstract

By a theorem of Wahl, the canonically embedded curves which are hyperplane section of K3 surfaces are distinguished by the non-surjectivity of their Wahl map. In this paper we address the problem of distinguishing hyperplane sections of abelian surfaces. The somewhat surprising result is that the Wahl map of such curves is (tendentially) surjective, but their second Wahl map has corank at least 2 (in fact a more precise result is proved).
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
gaussian maps; abelian surfaces; divisors
http://www.ams.org/journals/jag/2012-21-01/home.html
Colombo, E., Frediani, P., Pareschi, G. (2012). Hyperplane sections of abelian surfaces. JOURNAL OF ALGEBRAIC GEOMETRY, 21(1), 183-200 [10.1090/S1056-3911-2011-00556-0].
Colombo, E; Frediani, P; Pareschi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
jag556.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 249.22 kB
Formato Adobe PDF
249.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/91248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact