Prostate carcinoma (PCa) is one of the main causes of death in the western male population. Although initially controlled by anti-androgenic therapies, PCa often evolves to become androgen-insensitive and highly metastatic. A predominant role in the development of androgen-refractoriness is played by the upregulation of signal transduction pathways that allow prostate cancer cells to autonomously produce their own requirements of growth factors and nutrients (Grossmann et al., 2001). The tyrosine kinase Src is frequently activated in advanced human prostate carcinomas and in our laboratory we have observed that its activation correlates with tyrosine phosphorylation of the RNA-binding protein Sam68 (Paronetto et al., 2004), belonging to the STAR family (Signal transduction and RNA metabolism) and involved in RNA metabolism. In the first part of this PhD Thesis, we have investigated the expression and function of Sam68 in human prostate cancer cells. We observed that Sam68 is up-regulated both at protein and mRNA levels in patients affected by PCa. Moreover, it was observed that down-regulation of Sam68 by RNAi in LNCaP prostate cancer cells delayed cell cycle progression, reduced the proliferation rate and sensitized cells to apoptosis induced by DNA-damaging agents. Microarray analyses revealed that a subset of genes involved in proliferation and apoptosis were altered when Sam68 was knocked down in LNCaP cells. Finally, stable cell lines expressing a truncated GFP-Sam68GSG protein, that interacts with endogenous Sam68 affecting its activity, displayed reduced growth rates and higher sensitivity to cisplatin-induced apoptosis, resembling down-regulation of Sam68 by RNAi. Together, these results indicate that Sam68 expression supports prostate cancer cells proliferation and survival to cytotoxic agents (Busà et al., 2007). Stemming from this evidence, we then aimed to investigate the role played by Sam68 in the response to genotoxic drugs such as mitoxantrone (MTX), a topoisomerase II inhibitor.We observed that MTX caused a subcellular re-localization of Sam68 from nucleoplasm to nuclear granules. Co-staining experiments indicated that Sam68-positive nuclear granules are sites of accumulation of several RNA-binding proteins involved in alternative splicing, such as SR proteins like SC35 and ASF/SF2, and TIA-1 and hnRNP A1, involved in cellular stress responses to various stimuli (Guil et al., 2006). Sam68 also accumulated in cytoplasmic granules that were also co-stained with hnRNP A1 and TIA-1, suggesting that these structures are the well described cytoplasmic stress granules (SGs). These data strongly suggest that Sam68 is part of a RNA-mediated stress response of the cell. Thus, we have begun to investigate whether changes in subcellular localization of Sam68 induced by genotoxic drugs affect alternative splicing of Sam68 target mRNAs, such as CD44 (Matter et al., 2002). Preliminary experiments have shown that MTX treatment in PC3 cells induces changes in alternative splicing of CD44 pre-mRNA. In particular, inclusion of variable exons v5 and v6, known to be regulated by Sam68 (Matter et al., 2002; Cheng and Sharp, 2006), was stimulated. We are current extending these studies to determine whether downregulation of Sam68 by RNAi affects these modifications of CD44 alternative splicing caused by MTX Since Sam68 is known to link signal transduction pathways to RNA metabolism (Lukong and Richard, 2003), we asked whether changes in Sam68 subcellular localization induced by MTX are determined by activation of specific signal transduction pathways. Our data show that although MTX triggers activation of DNA damage pathway, through ATM kinase, and stress-induced MAPKs p38 and JNK1/2 pathways, specific inhibition of these pathways did not affect the subcellular relocalization of Sam68. Thus, it is possible that direct changes in the chromatin structure or function trigger the observed accumulation of Sam68 and splicing factors in nuclear granules. Finally, a set of observations performed during our studies implicate Sam68 in nucleolar functions. In a co-immunoprecipitation experiment aimed at the identification of Sam68-interacting proteins in LNCaP cells we found Nucleolin, a nucleolar protein involved in rRNA metabolism (Rickards et al., 2007). This interaction has been confirmed and mapped to the carboxyterminal region of Sam68 by in vitro studies. Moreover, a RNA-protein co-immunoprecipitation experiment revealed that Sam68 binds 18S rRNA These observations lead us to investigate whether Sam68 plays a role in rRNA metabolism. First, we observed by FISH analysis, and then confermed by real time PCR, that downregulation of Sam68 caused a significant increase in the levels of pre-rRNA compared with control siRNA treated cells. Moreover, ChIP assays aimed at determining the site of the association of Sam68 with rDNA in PC3 cells revealed that Sam68 binds the 18S rRNA coding region. Thus, the results presented herein strongly suggest a novel role of Sam68 in the regulation of pre-rRNA maturation. Our current studies are aimed at investigating this hypothesis further. References: Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C., Oncogene 2007 26(30):4372-82. Cheng C, Sharp PA. (2006). Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol. 26(1):362-70. Grossmann ME, Tindall DJ (2001). Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 93:1687-97; Guil S, Long JC, Cáceres JF. (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol. 26(15):5744-58. Lukong KE, Richard S (2003). Sam68, the KH domain-containing superSTAR. Bioch. Biophys. Acta 1653: 73-86. Matter N, Herrlich P, Konig H (2002). Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691-695. Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R et al (2004). Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am. J. Path. 164:1243-1251; Rickards B, Flint SJ, Cole MD, LeRoy G. (2007). Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 27(3):937-48.

Il tumore prostatico si sviluppa come una iper-proliferazione dipendente dagli androgeni delle cellule epiteliali ghiandolari e viene inizialmente affrontato con una terapia anti-androgenica. Tuttavia, dopo una regressione iniziale, il tumore si evolve in una forma più aggressiva indipendente dagli androgeni per cui ad oggi non è stata ancora trovata una cura (Grossmann et al., 2001). Nel nostro laboratorio è stata precedentemente descritta l’attivazione della tirosin chinasi Src in un gruppo di tumori prostatici avanzati, correlata alla fosforilazione in tirosina della RNA-binding protein Sam68 (Pronetto et al., 2004) appartenente alla famiglia STAR (Signal transduction and RNA metabolism), coinvolta nello splicing e nel processamento dei pre-mRNA (Lukong and Richard, 2003). Da qui abbiamo analizzato l’espressione e la funzione di Sam68 in cellule tumorali. Abbiamo osservato che, nei pazienti affetti da PCa, Sam68 è up-regolata sia a livello di mRNA che a livello di proteina. La down-regolazione di Sam68 tramite RNAi o interferire con la sua funzione in vivo con una proteina chimerica (GFP-Sam68GSG ) determinano un rallentamento della proliferazione di cellule tumorali prostatiche e le rendono più suscettibili all’apoptosi indotta da agenti chemoterapici. Questi dati mostrano quindi che l’espressione di Sam68 favorisce la proliferazione delle cellule tumorali di prostata e la sopravvivenza ad agenti chemoterapici (Busà et al., 2007). Ci siamo poi concentrati sullo studio del ruolo di Sam68 in questi eventi a livello molecolare. Abbiamo osservato che nelle cellule PC3, una linea di tumore prostatico non responsiva agli androgeni, in seguito a trattamento con l’agente chemoterapico mitoxantrone Sam68 rilocalizza all’interno di granuli nucleari. Abbiamo caratterizzato questi granuli nucleari ed abbiamo visto che in essi Sam68 colocalizza con diverse RNA-binding protein, sia appartenenti alla famiglia SR (SC35 e ASF/SF2) sia coinvolte nella risposta cellulare allo stress(hnRNP A1 e TIA1) (Guil et al., 2006). Sam68 si accumula anche in granuli citoplasmatici in cui co-localizza sia con hnRNP A1 che con TIA1, confermando si tratti dei cosiddetti stress granules (SGs). Questi dati suggeriscono che Sam68 faccia parte di una risposta cellulare allo stress “RNA-mediata”. Inoltre, poiché questa proteina è in grado di legare gli mRNA e di mediare lo splicing alternativo di pre-mRNA, abbiamo cercato di identificare i target modulati dal trattamento con il chemoterapico. In particolare ci siamo concentrati sullo splicing alternativo di un target già noto di Sam68, CD44 (Matter et al., 2002). Siamo andati ad analizzare lo splicing alternativo del pre-mRNA di CD44 in seguito a una dose-risposta con il mitoxantrone ed abbiamo riscontrato delle variazioni di splicing di alcuni esoni variabili, in particolare per v5 e v6, che sono noti essere regolati da Sam68 (Matter et al., 2002; Cheng and Sharp, 2006). Per valutare se le differenze osservate sono dovute alla rilocalizzazione di Sam68 effettueremo trattamenti con il chemoterapico su cellule silenziate per Sam68. Abbiamo individuato le vie biochimiche e di trasduzione del segnale che si accendono in risposta al trattamento con il mitoxantrone, la via del DNA damage di ATM e la via delle MAPkinasi indotta da stress di JNK1/2 e p38. Attraverso l’uso di inibitori specifici, per ATM, p38 e JNK, abbiamo osservato che queste vie non sono necessarie per la rilocalizzazione di Sam68. E ‘ dunque possibile che cambiamenti di conformazione della cromatina stimolino l’accumulo si Sam68 ed altri splicing factors nei granuli nucleari. Infine, alcune evidenze emerse nel corso dei nostri studi suggeriscono un nuovo ruolo di Sam68 nel metabolismo degli rRNA. In un esperimento di co-immunoprecipitazione per Sam68, tra le proteine lin grado di interagire con Sam68 abbiamo identificato Nucleolina, una proteina nucleolare coinvolta nel metabolismo del rRNA (Rickards et al., 2007). Abbiamo confermato quest’interazione e mappato la regione di legame nel dominio carbossi-terminale di Sam68. Inoltre, in un esperimento di co-immunoprecipitazione per Sam68 ed RNA, abbiamo identificato il 18S rRNA tra gli RNA legati da questa proteina. Abbiamo inoltre osservato, attraverso esperimenti di FISH confermati poi da real time PCR, che la down-regolazione di Sam68 determina un aumento significativo dei livelli del pre-rRNA in confronto alle cellule di controllo. Infine esperimenti di ChIP hanno dimostrato che Sam68 è in grado di legare il rDNA a cavallo della regione codificante per il 18S rRNA. Questi risultati suggeriscono un nuovo ruolo di Sam68 nel metabolismo del pre-rRNA. References: Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C., Oncogene 2007 26(30):4372-82. Cheng C, Sharp PA. (2006). Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol. 26(1):362-70. Grossmann ME, Tindall DJ (2001). Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 93:1687-97; Guil S, Long JC, Cáceres JF. (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol. 26(15):5744-58. Lukong KE, Richard S (2003). Sam68, the KH domain-containing superSTAR. Bioch. Biophys. Acta 1653: 73-86. Matter N, Herrlich P, Konig H (2002). Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691-695. Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R et al (2004). Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am. J. Path. 164:1243-1251; Rickards B, Flint SJ, Cole MD, LeRoy G. (2007). Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 27(3):937-48.

Busà, R. (2009). Role of the RNA-binding protein Sam68 in prostate cancer cell survival and proliferation.

Role of the RNA-binding protein Sam68 in prostate cancer cell survival and proliferation

BUSA', ROBERTA
2009-05-27

Abstract

Prostate carcinoma (PCa) is one of the main causes of death in the western male population. Although initially controlled by anti-androgenic therapies, PCa often evolves to become androgen-insensitive and highly metastatic. A predominant role in the development of androgen-refractoriness is played by the upregulation of signal transduction pathways that allow prostate cancer cells to autonomously produce their own requirements of growth factors and nutrients (Grossmann et al., 2001). The tyrosine kinase Src is frequently activated in advanced human prostate carcinomas and in our laboratory we have observed that its activation correlates with tyrosine phosphorylation of the RNA-binding protein Sam68 (Paronetto et al., 2004), belonging to the STAR family (Signal transduction and RNA metabolism) and involved in RNA metabolism. In the first part of this PhD Thesis, we have investigated the expression and function of Sam68 in human prostate cancer cells. We observed that Sam68 is up-regulated both at protein and mRNA levels in patients affected by PCa. Moreover, it was observed that down-regulation of Sam68 by RNAi in LNCaP prostate cancer cells delayed cell cycle progression, reduced the proliferation rate and sensitized cells to apoptosis induced by DNA-damaging agents. Microarray analyses revealed that a subset of genes involved in proliferation and apoptosis were altered when Sam68 was knocked down in LNCaP cells. Finally, stable cell lines expressing a truncated GFP-Sam68GSG protein, that interacts with endogenous Sam68 affecting its activity, displayed reduced growth rates and higher sensitivity to cisplatin-induced apoptosis, resembling down-regulation of Sam68 by RNAi. Together, these results indicate that Sam68 expression supports prostate cancer cells proliferation and survival to cytotoxic agents (Busà et al., 2007). Stemming from this evidence, we then aimed to investigate the role played by Sam68 in the response to genotoxic drugs such as mitoxantrone (MTX), a topoisomerase II inhibitor.We observed that MTX caused a subcellular re-localization of Sam68 from nucleoplasm to nuclear granules. Co-staining experiments indicated that Sam68-positive nuclear granules are sites of accumulation of several RNA-binding proteins involved in alternative splicing, such as SR proteins like SC35 and ASF/SF2, and TIA-1 and hnRNP A1, involved in cellular stress responses to various stimuli (Guil et al., 2006). Sam68 also accumulated in cytoplasmic granules that were also co-stained with hnRNP A1 and TIA-1, suggesting that these structures are the well described cytoplasmic stress granules (SGs). These data strongly suggest that Sam68 is part of a RNA-mediated stress response of the cell. Thus, we have begun to investigate whether changes in subcellular localization of Sam68 induced by genotoxic drugs affect alternative splicing of Sam68 target mRNAs, such as CD44 (Matter et al., 2002). Preliminary experiments have shown that MTX treatment in PC3 cells induces changes in alternative splicing of CD44 pre-mRNA. In particular, inclusion of variable exons v5 and v6, known to be regulated by Sam68 (Matter et al., 2002; Cheng and Sharp, 2006), was stimulated. We are current extending these studies to determine whether downregulation of Sam68 by RNAi affects these modifications of CD44 alternative splicing caused by MTX Since Sam68 is known to link signal transduction pathways to RNA metabolism (Lukong and Richard, 2003), we asked whether changes in Sam68 subcellular localization induced by MTX are determined by activation of specific signal transduction pathways. Our data show that although MTX triggers activation of DNA damage pathway, through ATM kinase, and stress-induced MAPKs p38 and JNK1/2 pathways, specific inhibition of these pathways did not affect the subcellular relocalization of Sam68. Thus, it is possible that direct changes in the chromatin structure or function trigger the observed accumulation of Sam68 and splicing factors in nuclear granules. Finally, a set of observations performed during our studies implicate Sam68 in nucleolar functions. In a co-immunoprecipitation experiment aimed at the identification of Sam68-interacting proteins in LNCaP cells we found Nucleolin, a nucleolar protein involved in rRNA metabolism (Rickards et al., 2007). This interaction has been confirmed and mapped to the carboxyterminal region of Sam68 by in vitro studies. Moreover, a RNA-protein co-immunoprecipitation experiment revealed that Sam68 binds 18S rRNA These observations lead us to investigate whether Sam68 plays a role in rRNA metabolism. First, we observed by FISH analysis, and then confermed by real time PCR, that downregulation of Sam68 caused a significant increase in the levels of pre-rRNA compared with control siRNA treated cells. Moreover, ChIP assays aimed at determining the site of the association of Sam68 with rDNA in PC3 cells revealed that Sam68 binds the 18S rRNA coding region. Thus, the results presented herein strongly suggest a novel role of Sam68 in the regulation of pre-rRNA maturation. Our current studies are aimed at investigating this hypothesis further. References: Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C., Oncogene 2007 26(30):4372-82. Cheng C, Sharp PA. (2006). Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol. 26(1):362-70. Grossmann ME, Tindall DJ (2001). Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 93:1687-97; Guil S, Long JC, Cáceres JF. (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol. 26(15):5744-58. Lukong KE, Richard S (2003). Sam68, the KH domain-containing superSTAR. Bioch. Biophys. Acta 1653: 73-86. Matter N, Herrlich P, Konig H (2002). Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691-695. Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R et al (2004). Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am. J. Path. 164:1243-1251; Rickards B, Flint SJ, Cole MD, LeRoy G. (2007). Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 27(3):937-48.
27-mag-2009
A.A. 2008/2009
Scienze e biotecnologie della riproduzione e dello sviluppo
21.
Il tumore prostatico si sviluppa come una iper-proliferazione dipendente dagli androgeni delle cellule epiteliali ghiandolari e viene inizialmente affrontato con una terapia anti-androgenica. Tuttavia, dopo una regressione iniziale, il tumore si evolve in una forma più aggressiva indipendente dagli androgeni per cui ad oggi non è stata ancora trovata una cura (Grossmann et al., 2001). Nel nostro laboratorio è stata precedentemente descritta l’attivazione della tirosin chinasi Src in un gruppo di tumori prostatici avanzati, correlata alla fosforilazione in tirosina della RNA-binding protein Sam68 (Pronetto et al., 2004) appartenente alla famiglia STAR (Signal transduction and RNA metabolism), coinvolta nello splicing e nel processamento dei pre-mRNA (Lukong and Richard, 2003). Da qui abbiamo analizzato l’espressione e la funzione di Sam68 in cellule tumorali. Abbiamo osservato che, nei pazienti affetti da PCa, Sam68 è up-regolata sia a livello di mRNA che a livello di proteina. La down-regolazione di Sam68 tramite RNAi o interferire con la sua funzione in vivo con una proteina chimerica (GFP-Sam68GSG ) determinano un rallentamento della proliferazione di cellule tumorali prostatiche e le rendono più suscettibili all’apoptosi indotta da agenti chemoterapici. Questi dati mostrano quindi che l’espressione di Sam68 favorisce la proliferazione delle cellule tumorali di prostata e la sopravvivenza ad agenti chemoterapici (Busà et al., 2007). Ci siamo poi concentrati sullo studio del ruolo di Sam68 in questi eventi a livello molecolare. Abbiamo osservato che nelle cellule PC3, una linea di tumore prostatico non responsiva agli androgeni, in seguito a trattamento con l’agente chemoterapico mitoxantrone Sam68 rilocalizza all’interno di granuli nucleari. Abbiamo caratterizzato questi granuli nucleari ed abbiamo visto che in essi Sam68 colocalizza con diverse RNA-binding protein, sia appartenenti alla famiglia SR (SC35 e ASF/SF2) sia coinvolte nella risposta cellulare allo stress(hnRNP A1 e TIA1) (Guil et al., 2006). Sam68 si accumula anche in granuli citoplasmatici in cui co-localizza sia con hnRNP A1 che con TIA1, confermando si tratti dei cosiddetti stress granules (SGs). Questi dati suggeriscono che Sam68 faccia parte di una risposta cellulare allo stress “RNA-mediata”. Inoltre, poiché questa proteina è in grado di legare gli mRNA e di mediare lo splicing alternativo di pre-mRNA, abbiamo cercato di identificare i target modulati dal trattamento con il chemoterapico. In particolare ci siamo concentrati sullo splicing alternativo di un target già noto di Sam68, CD44 (Matter et al., 2002). Siamo andati ad analizzare lo splicing alternativo del pre-mRNA di CD44 in seguito a una dose-risposta con il mitoxantrone ed abbiamo riscontrato delle variazioni di splicing di alcuni esoni variabili, in particolare per v5 e v6, che sono noti essere regolati da Sam68 (Matter et al., 2002; Cheng and Sharp, 2006). Per valutare se le differenze osservate sono dovute alla rilocalizzazione di Sam68 effettueremo trattamenti con il chemoterapico su cellule silenziate per Sam68. Abbiamo individuato le vie biochimiche e di trasduzione del segnale che si accendono in risposta al trattamento con il mitoxantrone, la via del DNA damage di ATM e la via delle MAPkinasi indotta da stress di JNK1/2 e p38. Attraverso l’uso di inibitori specifici, per ATM, p38 e JNK, abbiamo osservato che queste vie non sono necessarie per la rilocalizzazione di Sam68. E ‘ dunque possibile che cambiamenti di conformazione della cromatina stimolino l’accumulo si Sam68 ed altri splicing factors nei granuli nucleari. Infine, alcune evidenze emerse nel corso dei nostri studi suggeriscono un nuovo ruolo di Sam68 nel metabolismo degli rRNA. In un esperimento di co-immunoprecipitazione per Sam68, tra le proteine lin grado di interagire con Sam68 abbiamo identificato Nucleolina, una proteina nucleolare coinvolta nel metabolismo del rRNA (Rickards et al., 2007). Abbiamo confermato quest’interazione e mappato la regione di legame nel dominio carbossi-terminale di Sam68. Inoltre, in un esperimento di co-immunoprecipitazione per Sam68 ed RNA, abbiamo identificato il 18S rRNA tra gli RNA legati da questa proteina. Abbiamo inoltre osservato, attraverso esperimenti di FISH confermati poi da real time PCR, che la down-regolazione di Sam68 determina un aumento significativo dei livelli del pre-rRNA in confronto alle cellule di controllo. Infine esperimenti di ChIP hanno dimostrato che Sam68 è in grado di legare il rDNA a cavallo della regione codificante per il 18S rRNA. Questi risultati suggeriscono un nuovo ruolo di Sam68 nel metabolismo del pre-rRNA. References: Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C., Oncogene 2007 26(30):4372-82. Cheng C, Sharp PA. (2006). Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol. 26(1):362-70. Grossmann ME, Tindall DJ (2001). Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 93:1687-97; Guil S, Long JC, Cáceres JF. (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol. 26(15):5744-58. Lukong KE, Richard S (2003). Sam68, the KH domain-containing superSTAR. Bioch. Biophys. Acta 1653: 73-86. Matter N, Herrlich P, Konig H (2002). Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691-695. Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R et al (2004). Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am. J. Path. 164:1243-1251; Rickards B, Flint SJ, Cole MD, LeRoy G. (2007). Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 27(3):937-48.
PCa: prostate cancer; proliferation; RNA-binding protein; MTX: mitoxantrone; Sam68; RNA metabolism; apoptosis
Settore BIO/13 - BIOLOGIA APPLICATA
English
Tesi di dottorato
Busà, R. (2009). Role of the RNA-binding protein Sam68 in prostate cancer cell survival and proliferation.
File in questo prodotto:
File Dimensione Formato  
Tesi di Dottorato-Roberta Busà.pdf

accesso aperto

Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact