We study the weak convergence (in the high-frequency limit) of the parameter estimators of power spectrum coefficients associated with Gaussian, spherical and isotropic random fields. In particular, we introduce a Whittle-type approximate maximum likelihood estimator and we investigate its asympotic weak consistency and Gaussianity, in both parametric and semiparametric cases.

Durastanti, C., Lan, X., Marinucci, D. (2014). Gaussian semiparametric estimates on the unit sphere. BERNOULLI, 20(1), 28-77 [10.3150/12-BEJ475].

Gaussian semiparametric estimates on the unit sphere

MARINUCCI, DOMENICO
2014-01-01

Abstract

We study the weak convergence (in the high-frequency limit) of the parameter estimators of power spectrum coefficients associated with Gaussian, spherical and isotropic random fields. In particular, we introduce a Whittle-type approximate maximum likelihood estimator and we investigate its asympotic weak consistency and Gaussianity, in both parametric and semiparametric cases.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
Durastanti, C., Lan, X., Marinucci, D. (2014). Gaussian semiparametric estimates on the unit sphere. BERNOULLI, 20(1), 28-77 [10.3150/12-BEJ475].
Durastanti, C; Lan, X; Marinucci, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
bernoulli2014.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 522.47 kB
Formato Adobe PDF
522.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact