Solutions of the Hamilton-Jacobi equation H(x,-Du(x)) = 1, where H(center dot, p) is Holder continuous and the level-sets {H(x, center dot) a parts per thousand currency sign 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the -regularity of the extremal trajectories associated with the multifunction generated by D (p) H.

Cannarsa, P., Cardaliaguet, P. (2012). Regularity results for eikonal-type equations with nonsmooth coefficients. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 19(6), 751-769 [10.1007/s00030-011-0150-1].

Regularity results for eikonal-type equations with nonsmooth coefficients

CANNARSA, PIERMARCO;
2012-01-01

Abstract

Solutions of the Hamilton-Jacobi equation H(x,-Du(x)) = 1, where H(center dot, p) is Holder continuous and the level-sets {H(x, center dot) a parts per thousand currency sign 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the -regularity of the extremal trajectories associated with the multifunction generated by D (p) H.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Viscosity solutions; Semiconcave functions; Differential inclusions; Extremal trajectories
Cannarsa, P., Cardaliaguet, P. (2012). Regularity results for eikonal-type equations with nonsmooth coefficients. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 19(6), 751-769 [10.1007/s00030-011-0150-1].
Cannarsa, P; Cardaliaguet, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact