We prove that the operator Tf(x, y) = integral(pi)(-pi) integral(vertical bar x'vertical bar<vertical bar y'vertical bar) e(iN(x, y)x')/x' e(iN(x, y)y')/(y)' f(x - x', y - y')dx'dy', with x, y is an element of [0, 2 pi] and where the cut off vertical bar x'vertical bar < vertical bar y'vertical bar is performed in a smooth and dyadic way, is bounded from L-2 to weak-L2-epsilon, any epsilon > 0, under the basic assumption that the real-valued measurable function N(x, y) is "mainly" a function of y and the additional assumption that N(x, y) is non-decreasing in x, for every y fixed. This is an extension to 2D of C. Fefferman's proof of a.e. convergence of Fourier series of L2 functions.
Prestini, E. (2012). Almost orthogonal operators on the bitorus II. MATHEMATISCHE ZEITSCHRIFT, 271(1-2), 271-291 [10.1007/s00209-011-0863-1].
Almost orthogonal operators on the bitorus II
PRESTINI, ELENA
2012-01-01
Abstract
We prove that the operator Tf(x, y) = integral(pi)(-pi) integral(vertical bar x'vertical barFile | Dimensione | Formato | |
---|---|---|---|
bitorus II.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
302.12 kB
Formato
Adobe PDF
|
302.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.