We prove that the operator Tf(x, y) = integral(pi)(-pi) integral(vertical bar x'vertical bar<vertical bar y'vertical bar) e(iN(x, y)x')/x' e(iN(x, y)y')/(y)' f(x - x', y - y')dx'dy', with x, y is an element of [0, 2 pi] and where the cut off vertical bar x'vertical bar < vertical bar y'vertical bar is performed in a smooth and dyadic way, is bounded from L-2 to weak-L2-epsilon, any epsilon > 0, under the basic assumption that the real-valued measurable function N(x, y) is "mainly" a function of y and the additional assumption that N(x, y) is non-decreasing in x, for every y fixed. This is an extension to 2D of C. Fefferman's proof of a.e. convergence of Fourier series of L2 functions.

Prestini, E. (2012). Almost orthogonal operators on the bitorus II. MATHEMATISCHE ZEITSCHRIFT, 271(1-2), 271-291 [10.1007/s00209-011-0863-1].

Almost orthogonal operators on the bitorus II

PRESTINI, ELENA
2012-01-01

Abstract

We prove that the operator Tf(x, y) = integral(pi)(-pi) integral(vertical bar x'vertical bar 0, under the basic assumption that the real-valued measurable function N(x, y) is "mainly" a function of y and the additional assumption that N(x, y) is non-decreasing in x, for every y fixed. This is an extension to 2D of C. Fefferman's proof of a.e. convergence of Fourier series of L2 functions.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Carleson operator; A.e. convergence of double Fourier series
Prestini, E. (2012). Almost orthogonal operators on the bitorus II. MATHEMATISCHE ZEITSCHRIFT, 271(1-2), 271-291 [10.1007/s00209-011-0863-1].
Prestini, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
bitorus II.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 302.12 kB
Formato Adobe PDF
302.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact