n this paper we give the full classification of curves $C$ of genus $g$ such that a Brill--Noether locus $W^ s_d(C)$, strictly contained in the jacobian $J(C)$ of $C$, contains a variety $Z$ stable under translations by the elements of a positive dimensional abelian subvariety $A\subsetneq J(C)$ and such that $\dim(Z)=d-\dim(A)-2s$, i.e., the maximum possible dimension for such a $Z$.
Ciliberto, C., Lopes, M., Pardini, R. (2014). Abelian varieties in Brill-Noether loci. ADVANCES IN MATHEMATICS, 257, 349-364 [10.1016/j.aim.2014.02.024].
Abelian varieties in Brill-Noether loci
CILIBERTO, CIRO;
2014-01-01
Abstract
n this paper we give the full classification of curves $C$ of genus $g$ such that a Brill--Noether locus $W^ s_d(C)$, strictly contained in the jacobian $J(C)$ of $C$, contains a variety $Z$ stable under translations by the elements of a positive dimensional abelian subvariety $A\subsetneq J(C)$ and such that $\dim(Z)=d-\dim(A)-2s$, i.e., the maximum possible dimension for such a $Z$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
YAIMA4666.pdf
solo utenti autorizzati
Dimensione
670.04 kB
Formato
Unknown
|
670.04 kB | Unknown | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.