n this paper we give the full classification of curves $C$ of genus $g$ such that a Brill--Noether locus $W^ s_d(C)$, strictly contained in the jacobian $J(C)$ of $C$, contains a variety $Z$ stable under translations by the elements of a positive dimensional abelian subvariety $A\subsetneq J(C)$ and such that $\dim(Z)=d-\dim(A)-2s$, i.e., the maximum possible dimension for such a $Z$.

Ciliberto, C., Lopes, M., Pardini, R. (2014). Abelian varieties in Brill-Noether loci. ADVANCES IN MATHEMATICS, 257, 349-364 [10.1016/j.aim.2014.02.024].

Abelian varieties in Brill-Noether loci

CILIBERTO, CIRO;
2014-01-01

Abstract

n this paper we give the full classification of curves $C$ of genus $g$ such that a Brill--Noether locus $W^ s_d(C)$, strictly contained in the jacobian $J(C)$ of $C$, contains a variety $Z$ stable under translations by the elements of a positive dimensional abelian subvariety $A\subsetneq J(C)$ and such that $\dim(Z)=d-\dim(A)-2s$, i.e., the maximum possible dimension for such a $Z$.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Ciliberto, C., Lopes, M., Pardini, R. (2014). Abelian varieties in Brill-Noether loci. ADVANCES IN MATHEMATICS, 257, 349-364 [10.1016/j.aim.2014.02.024].
Ciliberto, C; Lopes, M; Pardini, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
YAIMA4666.pdf

solo utenti autorizzati

Dimensione 670.04 kB
Formato Unknown
670.04 kB Unknown   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact