We present a new geometric construction of Loewner chains in one and several complex variables which holds on complete hyperbolic complex manifolds and prove that there is essentially a one-to-one correspondence between evolution families of order d and Loewner chains of the same order. As a consequence, we obtain a univalent solution (f (t) : M -> N) of any Loewner-Kufarev PDE. The problem of finding solutions given by univalent mappings (f (t) : M -> a", (n) ) is reduced to investigating whether the complex manifold a(a) (ta parts per thousand yen0) f (t) (M) is biholomorphic to a domain in a", (n) . We apply such results to the study of univalent mappings f: B (n) -> a", (n) .
Arosio, L., Bracci, F., Hamada, H., Kohr, G. (2013). An abstract approach to Loewner chains. JOURNAL D'ANALYSE MATHEMATIQUE, 119(1), 89-114 [10.1007/s11854-013-0003-4].
An abstract approach to Loewner chains
AROSIO, LEANDRO;BRACCI, FILIPPO;
2013-01-01
Abstract
We present a new geometric construction of Loewner chains in one and several complex variables which holds on complete hyperbolic complex manifolds and prove that there is essentially a one-to-one correspondence between evolution families of order d and Loewner chains of the same order. As a consequence, we obtain a univalent solution (f (t) : M -> N) of any Loewner-Kufarev PDE. The problem of finding solutions given by univalent mappings (f (t) : M -> a", (n) ) is reduced to investigating whether the complex manifold a(a) (ta parts per thousand yen0) f (t) (M) is biholomorphic to a domain in a", (n) . We apply such results to the study of univalent mappings f: B (n) -> a", (n) .File | Dimensione | Formato | |
---|---|---|---|
reprint.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
339.98 kB
Formato
Adobe PDF
|
339.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.