We give a result of existence and uniqueness of weak solutions to the planning problem for a class of Mean Field Games. This is a kind of optimal transportation problem consisting in the exact controllability at time T of Fokker-Planck equations obtained using drifts arising as the optimal feedbacks from a coupled backward Hamilton-Jacobi-Bellman equation.

Porretta, A. (2013). On the planning problem for a class of mean field games. COMPTES RENDUS MATHÉMATIQUE, 351(11-12), 457-462 [10.1016/j.crma.2013.07.004].

On the planning problem for a class of mean field games

PORRETTA, ALESSIO
2013-01-01

Abstract

We give a result of existence and uniqueness of weak solutions to the planning problem for a class of Mean Field Games. This is a kind of optimal transportation problem consisting in the exact controllability at time T of Fokker-Planck equations obtained using drifts arising as the optimal feedbacks from a coupled backward Hamilton-Jacobi-Bellman equation.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Senza Impact Factor ISI
Porretta, A. (2013). On the planning problem for a class of mean field games. COMPTES RENDUS MATHÉMATIQUE, 351(11-12), 457-462 [10.1016/j.crma.2013.07.004].
Porretta, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact