We prove Central Limit Theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combine asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and Total Variation bounds for Gaussian subordinated fields. We discuss application to geometric functionals like the Defect and invariant statistics, e.g. polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

Marinucci, D., Wigman, I. (2014). On nonlinear functionals of random spherical eigenfunctions. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 327(3), 849-872 [10.1007/s00220-014-1939-7].

On nonlinear functionals of random spherical eigenfunctions

MARINUCCI, DOMENICO;
2014-01-01

Abstract

We prove Central Limit Theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combine asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and Total Variation bounds for Gaussian subordinated fields. We discuss application to geometric functionals like the Defect and invariant statistics, e.g. polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
ERC Pascal 277742
Marinucci, D., Wigman, I. (2014). On nonlinear functionals of random spherical eigenfunctions. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 327(3), 849-872 [10.1007/s00220-014-1939-7].
Marinucci, D; Wigman, I
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CMP2014.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 336.25 kB
Formato Adobe PDF
336.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact