For 0 < p - 1 < q and either epsilon = 1 or epsilon = -1, we prove the existence of solutions of -Delta(p)u = epsilon u(q) in a cone C-S, with vertex 0 and opening S, vanishing on partial derivative C-S, of the form u(x) = vertical bar x vertical bar(-beta) omega(x/vertical bar x vertical bar). The problem reduces to a quasilinear elliptic equation on S and the existence proof is based upon degree theory and homotopy methods. We also obtain a nonexistence result in some critical case by making use of an integral type identity.

Porretta, A., Veron, L. (2013). Separable solutions of quasilinear Lane-Emden equations. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 15(3), 755-774 [10.4171/JEMS/375].

Separable solutions of quasilinear Lane-Emden equations

PORRETTA, ALESSIO;
2013-01-01

Abstract

For 0 < p - 1 < q and either epsilon = 1 or epsilon = -1, we prove the existence of solutions of -Delta(p)u = epsilon u(q) in a cone C-S, with vertex 0 and opening S, vanishing on partial derivative C-S, of the form u(x) = vertical bar x vertical bar(-beta) omega(x/vertical bar x vertical bar). The problem reduces to a quasilinear elliptic equation on S and the existence proof is based upon degree theory and homotopy methods. We also obtain a nonexistence result in some critical case by making use of an integral type identity.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Quasilinear elliptic equations; p-Laplacian; cones; Leray-Schauder degree
Porretta, A., Veron, L. (2013). Separable solutions of quasilinear Lane-Emden equations. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 15(3), 755-774 [10.4171/JEMS/375].
Porretta, A; Veron, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
QuasiSource16.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 219.3 kB
Formato Adobe PDF
219.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact