We provide a definition of the integral, along paths in the Sierpinski gasket K, for differential smooth 1-forms associated to the standard Dirichlet form epsilon on K. We show how this tool can be used to study the potential theory on K. In particular, we prove: (i) a de Rham reconstruction of a 1-form from its periods around lacunas in K; (ii) a Hodge decomposition of 1-forms with respect to the Hilbertian energy norm; (iii) the existence of potentials of smooth 1-forms on a suitable covering space of K. We finally show that this framework provides versions of the de Rham duality theorem for the fractal K. (C) 2013 Elsevier Inc. All rights reserved.
Cipriani, F., Guido, D., Isola, T., Sauvageot, J. (2013). Integrals and potentials of differential 1-forms on the Sierpinski gasket. ADVANCES IN MATHEMATICS, 239, 128-163 [10.1016/j.aim.2013.02.014].
Integrals and potentials of differential 1-forms on the Sierpinski gasket
GUIDO, DANIELE;ISOLA, TOMMASO;
2013-01-01
Abstract
We provide a definition of the integral, along paths in the Sierpinski gasket K, for differential smooth 1-forms associated to the standard Dirichlet form epsilon on K. We show how this tool can be used to study the potential theory on K. In particular, we prove: (i) a de Rham reconstruction of a 1-form from its periods around lacunas in K; (ii) a Hodge decomposition of 1-forms with respect to the Hilbertian energy norm; (iii) the existence of potentials of smooth 1-forms on a suitable covering space of K. We finally show that this framework provides versions of the de Rham duality theorem for the fractal K. (C) 2013 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
130126CGIS01.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.