From the point of view of uniform bounds for the birationality of pluri- canonical maps, irregular varieties of general type and maximal Albanese dimension behave similarly to curves. In fact Chen-Hacon showed that, at least when their holomorphic Euler characteristic is positive, the tricanonical map of such varieties is always birational. In this pa- per we study the bicanonical map. We consider the natural subclass of varieties of maximal Albanese dimension formed by primitive varieties of Albanese general type. We prove that the only such varieties with non-birational bicanonical map are the natural higher-dimensional gen- eralization to this context of curves of genus 2: varieties birationally equivalent to the theta-divisor of an indecomposable principally polar- ized abelian variety. The proof is based on the (generalized) Fourier- Mukai transform.

Barja, M., Lahoz, M., Naranjo, J., Pareschi, G. (2012). On the bicanonical map of irregular varieties. JOURNAL OF ALGEBRAIC GEOMETRY, 21(3), 445-471 [10.1090/S1056-3911-2011-00565-1].

On the bicanonical map of irregular varieties

PARESCHI, GIUSEPPE
2012-01-01

Abstract

From the point of view of uniform bounds for the birationality of pluri- canonical maps, irregular varieties of general type and maximal Albanese dimension behave similarly to curves. In fact Chen-Hacon showed that, at least when their holomorphic Euler characteristic is positive, the tricanonical map of such varieties is always birational. In this pa- per we study the bicanonical map. We consider the natural subclass of varieties of maximal Albanese dimension formed by primitive varieties of Albanese general type. We prove that the only such varieties with non-birational bicanonical map are the natural higher-dimensional gen- eralization to this context of curves of genus 2: varieties birationally equivalent to the theta-divisor of an indecomposable principally polar- ized abelian variety. The proof is based on the (generalized) Fourier- Mukai transform.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Pluricanonical maps. Bicanonical map. Irregular varieties. Albanese map.
Barja, M., Lahoz, M., Naranjo, J., Pareschi, G. (2012). On the bicanonical map of irregular varieties. JOURNAL OF ALGEBRAIC GEOMETRY, 21(3), 445-471 [10.1090/S1056-3911-2011-00565-1].
Barja, M; Lahoz, M; Naranjo, J; Pareschi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
bicanonica.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 347.44 kB
Formato Adobe PDF
347.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact