We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of -Delta u = |x|(2 alpha) Ve (u) in Omega for Omega aS, a"e(2) open, alpha a (-1, 0) and V any Lipschitz continuous function satisfying 0 < a a parts per thousand currency sign V a parts per thousand currency sign b < a and aEuro-a double dagger VaEuro-(a) a parts per thousand currency sign A.
Bartolucci, D. (2012). A sup plus inf inequality for Liouville type equationswith weights. JOURNAL D'ANALYSE MATHEMATIQUE, 117, 29-46 [10.1007/s11854-012-0013-7].
A sup plus inf inequality for Liouville type equationswith weights
BARTOLUCCI, DANIELE
2012-01-01
Abstract
We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of -Delta u = |x|(2 alpha) Ve (u) in Omega for Omega aS, a"e(2) open, alpha a (-1, 0) and V any Lipschitz continuous function satisfying 0 < a a parts per thousand currency sign V a parts per thousand currency sign b < a and aEuro-a double dagger VaEuro-(a) a parts per thousand currency sign A.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JdAM 117 (2012).pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
146.88 kB
Formato
Adobe PDF
|
146.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.