The goal of this paper is to study the dynamics of holomorphic diffeomorphisms in such that the resonances among the first 1≤r≤n eigenvalues of the differential are generated over by a finite number of-linearly independent multi-indices (and more resonances are allowed for other eigenvalues). We give sharp conditions for the existence of basins of attraction where a Fatou coordinate can be defined. Furthermore, we obtain a generalization of the Leau-Fatou flower theorem, providing a complete description of the dynamics in a full neighborhood of the origin for 1-resonant parabolically attracting holomorphic germs in Poincaré-Dulac normal form.

Bracci, F., Raissy, J., Zaitsev, D. (2013). Dynamics of multi-resonant biholomorphisms. INTERNATIONAL MATHEMATICS RESEARCH NOTICES(20), 4772-4797 [DOI: 10.1093/imrn/rns192].

Dynamics of multi-resonant biholomorphisms

BRACCI, FILIPPO;
2013-01-01

Abstract

The goal of this paper is to study the dynamics of holomorphic diffeomorphisms in such that the resonances among the first 1≤r≤n eigenvalues of the differential are generated over by a finite number of-linearly independent multi-indices (and more resonances are allowed for other eigenvalues). We give sharp conditions for the existence of basins of attraction where a Fatou coordinate can be defined. Furthermore, we obtain a generalization of the Leau-Fatou flower theorem, providing a complete description of the dynamics in a full neighborhood of the origin for 1-resonant parabolically attracting holomorphic germs in Poincaré-Dulac normal form.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
ERC "HEVO"
Bracci, F., Raissy, J., Zaitsev, D. (2013). Dynamics of multi-resonant biholomorphisms. INTERNATIONAL MATHEMATICS RESEARCH NOTICES(20), 4772-4797 [DOI: 10.1093/imrn/rns192].
Bracci, F; Raissy, J; Zaitsev, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Int Math Res Notices-2013-Bracci-4772-97.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 212.63 kB
Formato Adobe PDF
212.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact