Dealing with Pythagorean Hodograph quintic Hermite interpolation in the space, we deepen the analysis of the so-called CC criterion proposed in Farouki et al. (2008) for fixing the two free angular parameters characterizing the set of possible solutions, which remarkably influence the shape of the chosen interpolant. Such criterion is easy to implement, guarantees the reproduction of the standard cubic Hermite interpolant when it is a PH curve and usually allows the selection of interpolants with good shape. Here we first rigorously prove that the PH interpolant it selects doesn't depend on the unit pure vector chosen for representing its hodograph in quaternion form. Then we evaluate the corresponding interpolation scheme from a theoretical point of view, proving with the help of symbolic computation that it has fourth approximation order. A selection of experiments related to the spline implementation of the method confirms our analysis. (c) 2012 Elsevier B.V. All rights reserved.

Sestini, A., Landolfi, L., Manni, C. (2013). On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme. COMPUTER AIDED GEOMETRIC DESIGN, 30(1), 148-158 [10.1016/j.cagd.2012.07.004].

On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme

MANNI, CARLA
2013-01-01

Abstract

Dealing with Pythagorean Hodograph quintic Hermite interpolation in the space, we deepen the analysis of the so-called CC criterion proposed in Farouki et al. (2008) for fixing the two free angular parameters characterizing the set of possible solutions, which remarkably influence the shape of the chosen interpolant. Such criterion is easy to implement, guarantees the reproduction of the standard cubic Hermite interpolant when it is a PH curve and usually allows the selection of interpolants with good shape. Here we first rigorously prove that the PH interpolant it selects doesn't depend on the unit pure vector chosen for representing its hodograph in quaternion form. Then we evaluate the corresponding interpolation scheme from a theoretical point of view, proving with the help of symbolic computation that it has fourth approximation order. A selection of experiments related to the spline implementation of the method confirms our analysis. (c) 2012 Elsevier B.V. All rights reserved.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Pythagorean Hodograph; Quaternions; Hermite interpolation
Sestini, A., Landolfi, L., Manni, C. (2013). On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme. COMPUTER AIDED GEOMETRIC DESIGN, 30(1), 148-158 [10.1016/j.cagd.2012.07.004].
Sestini, A; Landolfi, L; Manni, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Pubblicato_CAGD.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 414.91 kB
Formato Adobe PDF
414.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact