We show that the space of all holomorphic maps of degree one from the Rie-mann sphere into a Grassmann manifold is a sphere bundle over a flag manifold. Using the notions of "kernel" and "span" of a map, we completely identify the space of unparame-terized maps as well. The illustrative case of maps into the quadric Grassmann manifold is discussed in detail and the homology of the corresponding spaces is computed.

Ben Hammouda, W., Kallel, S., Salvatore, P. (2013). The space of linear maps into a Grassmann manifold. FORUM MATHEMATICUM, 25(6) [10.1515/forum-2011-0156].

The space of linear maps into a Grassmann manifold

SALVATORE, PAOLO
2013-01-01

Abstract

We show that the space of all holomorphic maps of degree one from the Rie-mann sphere into a Grassmann manifold is a sphere bundle over a flag manifold. Using the notions of "kernel" and "span" of a map, we completely identify the space of unparame-terized maps as well. The illustrative case of maps into the quadric Grassmann manifold is discussed in detail and the homology of the corresponding spaces is computed.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Characteristic classes; Grassmannians; Holomorphic maps
Ben Hammouda, W., Kallel, S., Salvatore, P. (2013). The space of linear maps into a Grassmann manifold. FORUM MATHEMATICUM, 25(6) [10.1515/forum-2011-0156].
Ben Hammouda, W; Kallel, S; Salvatore, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
hammouda2012.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 442.24 kB
Formato Adobe PDF
442.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact