We show that the space of all holomorphic maps of degree one from the Rie-mann sphere into a Grassmann manifold is a sphere bundle over a flag manifold. Using the notions of "kernel" and "span" of a map, we completely identify the space of unparame-terized maps as well. The illustrative case of maps into the quadric Grassmann manifold is discussed in detail and the homology of the corresponding spaces is computed.
Ben Hammouda, W., Kallel, S., Salvatore, P. (2013). The space of linear maps into a Grassmann manifold. FORUM MATHEMATICUM, 25(6) [10.1515/forum-2011-0156].
The space of linear maps into a Grassmann manifold
SALVATORE, PAOLO
2013-01-01
Abstract
We show that the space of all holomorphic maps of degree one from the Rie-mann sphere into a Grassmann manifold is a sphere bundle over a flag manifold. Using the notions of "kernel" and "span" of a map, we completely identify the space of unparame-terized maps as well. The illustrative case of maps into the quadric Grassmann manifold is discussed in detail and the homology of the corresponding spaces is computed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
hammouda2012.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
442.24 kB
Formato
Adobe PDF
|
442.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.