We propose a unified approach to reversible and irreversible pca dynamics, and we show that in the case of 1D and 2D nearest neighbor Ising systems with periodic boundary conditions we are able to compute the stationary measure of the dynamics also when the latter is irreversible. We also show how, according to (P. Dai Pra et al. in J. Stat. Phys. 149(4):722-737, 2012), the stationary measure is very close to the Gibbs for a suitable choice of the parameters of the pca dynamics, both in the reversible and in the irreversible cases. We discuss some numerical aspects regarding this topic, including a possible parallel implementation.

Lancia, C., Scoppola, B. (2013). Equilibrium and Non-equilibrium Ising Models by Means of PCA. JOURNAL OF STATISTICAL PHYSICS, 153(4), 641-653 [10.1007/s10955-013-0847-0].

Equilibrium and Non-equilibrium Ising Models by Means of PCA

SCOPPOLA, BENEDETTO
2013-01-01

Abstract

We propose a unified approach to reversible and irreversible pca dynamics, and we show that in the case of 1D and 2D nearest neighbor Ising systems with periodic boundary conditions we are able to compute the stationary measure of the dynamics also when the latter is irreversible. We also show how, according to (P. Dai Pra et al. in J. Stat. Phys. 149(4):722-737, 2012), the stationary measure is very close to the Gibbs for a suitable choice of the parameters of the pca dynamics, both in the reversible and in the irreversible cases. We discuss some numerical aspects regarding this topic, including a possible parallel implementation.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Markov chains; Probabilistic cellular automata; Stationary distribution; Equilibrium and non-equilibrium statistical mechanics
Lancia, C., Scoppola, B. (2013). Equilibrium and Non-equilibrium Ising Models by Means of PCA. JOURNAL OF STATISTICAL PHYSICS, 153(4), 641-653 [10.1007/s10955-013-0847-0].
Lancia, C; Scoppola, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
LS.pdf

solo utenti autorizzati

Descrizione: articolo principale
Licenza: Copyright dell'editore
Dimensione 681.88 kB
Formato Adobe PDF
681.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 13
social impact