Text. We prove congruences, modulo a power of a prime p, for certain finite sums involving central binomial coefficients ((2k)(k)), partly motivated by analogies with the well-known power series for (arcsin z)(2) and (arcsin z)(4). The right-hand sides of those congruences involve values of the finite polylogarithms L-d(x) = Sigma(p-1)(k=1) x(k)/k(d). Exploiting the available functional equations for the latter we compute those values, modulo the required powers of p, in terms of familiar quantities such as Fermat quotients and Bernoulli numbers. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/warch?v-W54Ad0YFr8A. (C) 2012 Elsevier Inc. All rights reserved.
Mattarei, S., Tauraso, R. (2013). Congruences for central binomial sums and finite polylogarithms. JOURNAL OF NUMBER THEORY, 133(1), 131-157 [10.1016/j.jnt.2012.05.036].
Congruences for central binomial sums and finite polylogarithms
TAURASO, ROBERTO
2013-01-01
Abstract
Text. We prove congruences, modulo a power of a prime p, for certain finite sums involving central binomial coefficients ((2k)(k)), partly motivated by analogies with the well-known power series for (arcsin z)(2) and (arcsin z)(4). The right-hand sides of those congruences involve values of the finite polylogarithms L-d(x) = Sigma(p-1)(k=1) x(k)/k(d). Exploiting the available functional equations for the latter we compute those values, modulo the required powers of p, in terms of familiar quantities such as Fermat quotients and Bernoulli numbers. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/warch?v-W54Ad0YFr8A. (C) 2012 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
[2013] Congruences for central binomial sums and finite polylogarithms.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
356.31 kB
Formato
Adobe PDF
|
356.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.