STAT1 is an essential transcription factor for macrophage activation by IFN-gamma and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-alpha occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-gamma-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-gamma-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-alpha caused activation of p38 MAPK whereas IFN-gamma did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-alpha production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKalpha and beta but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-gamma-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.

Kovarik, P., Stoiber, D., Eyers, P., Menghini, R., Neininger, A., Gaestel, M., et al. (1999). Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 96(24), 13956-13961.

Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway

MENGHINI, ROSSELLA;
1999-11-23

Abstract

STAT1 is an essential transcription factor for macrophage activation by IFN-gamma and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-alpha occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-gamma-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-gamma-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-alpha caused activation of p38 MAPK whereas IFN-gamma did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-alpha production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKalpha and beta but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-gamma-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.
23-nov-1999
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA
English
Macrophages; Animals; Ultraviolet Rays; Janus Kinase 2; Intracellular Signaling Peptides and Proteins; Humans; Transcription, Genetic; Phosphorylation; Lipopolysaccharides; Mitogen-Activated Protein Kinases; Cell Line, Transformed; Trans-Activators; Serine; Tumor Necrosis Factor-alpha; Interferon-gamma; Enzyme Activation; DNA-Binding Proteins; Protein-Tyrosine Kinases; Enzyme Inhibitors; Rabbits; Recombinant Fusion Proteins; Pyridines; Protein-Serine-Threonine Kinases; Imidazoles; MAP Kinase Signaling System; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins; STAT1 Transcription Factor; Cell Line
Kovarik, P., Stoiber, D., Eyers, P., Menghini, R., Neininger, A., Gaestel, M., et al. (1999). Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 96(24), 13956-13961.
Kovarik, P; Stoiber, D; Eyers, P; Menghini, R; Neininger, A; Gaestel, M; Cohen, P; Decker, T
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact