We prove uniqueness of weak (or entropy) solutions for nonmonotone elliptic equations of the type -div(a (x, u)del u) = f in a bounded set Omega subset of R-N with Dirichlet boundary conditions. The novelty of our results consists in the possibility to deal with cases when a (x, u) is only Holder continuous with respect to u.

Boccardo, L., Porretta, A. (2013). UNIQUENESS FOR ELLIPTIC PROBLEMS WITH HOLDER-TYPE DEPENDENCE ON THE SOLUTION. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 12(4), 1569-1585 [10.3934/cpaa.2013.12.1569].

UNIQUENESS FOR ELLIPTIC PROBLEMS WITH HOLDER-TYPE DEPENDENCE ON THE SOLUTION

PORRETTA, ALESSIO
2013-01-01

Abstract

We prove uniqueness of weak (or entropy) solutions for nonmonotone elliptic equations of the type -div(a (x, u)del u) = f in a bounded set Omega subset of R-N with Dirichlet boundary conditions. The novelty of our results consists in the possibility to deal with cases when a (x, u) is only Holder continuous with respect to u.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Nonlinear elliptic equations; uniqueness; Holder nonlinearities
Boccardo, L., Porretta, A. (2013). UNIQUENESS FOR ELLIPTIC PROBLEMS WITH HOLDER-TYPE DEPENDENCE ON THE SOLUTION. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 12(4), 1569-1585 [10.3934/cpaa.2013.12.1569].
Boccardo, L; Porretta, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/90063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact