Given a holomorphic line bundle over the complex affine quadric (2), we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant biholomorphism, these are all contained in a maximal one, say Omega(max). By removing the zero section from Omega(max) one obtains the unique Stein, SU(2)-equivariant, punctured disc bundle over (2) which contains entire curves. All other such punctured disc bundles are shown to be Kobayashi hyperbolic.

Iannuzzi, A. (2012). On hyperbolicity of SU(2)-equivariant, punctured disc bundles over the complex affine quadric. TRANSFORMATION GROUPS, 17(2), 499-512 [10.1007/s00031-011-9167-0].

On hyperbolicity of SU(2)-equivariant, punctured disc bundles over the complex affine quadric

IANNUZZI, ANDREA
2012-01-01

Abstract

Given a holomorphic line bundle over the complex affine quadric (2), we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant biholomorphism, these are all contained in a maximal one, say Omega(max). By removing the zero section from Omega(max) one obtains the unique Stein, SU(2)-equivariant, punctured disc bundle over (2) which contains entire curves. All other such punctured disc bundles are shown to be Kobayashi hyperbolic.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Holomorphic line bundle; Kobayashi hyperbolicity; Stein manifold
http://link.springer.com/article/10.1007%2Fs00031-011-9167-0
Iannuzzi, A. (2012). On hyperbolicity of SU(2)-equivariant, punctured disc bundles over the complex affine quadric. TRANSFORMATION GROUPS, 17(2), 499-512 [10.1007/s00031-011-9167-0].
Iannuzzi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Ian2012.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Licenza: Copyright dell'editore
Dimensione 360.29 kB
Formato Adobe PDF
360.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/89990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact