Given a holomorphic line bundle over the complex affine quadric (2), we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant biholomorphism, these are all contained in a maximal one, say Omega(max). By removing the zero section from Omega(max) one obtains the unique Stein, SU(2)-equivariant, punctured disc bundle over (2) which contains entire curves. All other such punctured disc bundles are shown to be Kobayashi hyperbolic.
Iannuzzi, A. (2012). On hyperbolicity of SU(2)-equivariant, punctured disc bundles over the complex affine quadric. TRANSFORMATION GROUPS, 17(2), 499-512 [10.1007/s00031-011-9167-0].
On hyperbolicity of SU(2)-equivariant, punctured disc bundles over the complex affine quadric
IANNUZZI, ANDREA
2012-01-01
Abstract
Given a holomorphic line bundle over the complex affine quadric (2), we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant biholomorphism, these are all contained in a maximal one, say Omega(max). By removing the zero section from Omega(max) one obtains the unique Stein, SU(2)-equivariant, punctured disc bundle over (2) which contains entire curves. All other such punctured disc bundles are shown to be Kobayashi hyperbolic.File | Dimensione | Formato | |
---|---|---|---|
Ian2012.pdf
solo utenti autorizzati
Descrizione: Articolo Principale
Licenza:
Copyright dell'editore
Dimensione
360.29 kB
Formato
Adobe PDF
|
360.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.