This paper deals with the fractional Sobolev spaces W-s,W-p. We analyze the relations among some of their possible definitions and their role in the trace theory. We prove continuous and compact embeddings, investigating the problem of the extension domains and other regularity results. Most of the results we present here are probably well known to the experts, but we believe that our proofs are original and we do not make use of any interpolation techniques nor pass through the theory of Besov spaces. We also present some counterexamples in non-Lipschitz domains. (c) 2011 Elsevier Masson SAS. All rights reserved.

Di Nezza, E., Palatucci, G., Valdinoci, E. (2012). Hitchhiker's guide to the fractional Sobolev spaces. BULLETIN DES SCIENCES MATHEMATIQUES, 136(5), 521-573 [10.1016/j.bulsci.2011.12.004].

Hitchhiker's guide to the fractional Sobolev spaces

VALDINOCI, ENRICO
2012-01-01

Abstract

This paper deals with the fractional Sobolev spaces W-s,W-p. We analyze the relations among some of their possible definitions and their role in the trace theory. We prove continuous and compact embeddings, investigating the problem of the extension domains and other regularity results. Most of the results we present here are probably well known to the experts, but we believe that our proofs are original and we do not make use of any interpolation techniques nor pass through the theory of Besov spaces. We also present some counterexamples in non-Lipschitz domains. (c) 2011 Elsevier Masson SAS. All rights reserved.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Fractional Sobolev spaces; Gagliardo norm; Fractional Laplacian; Nonlocal energy; Sobolev embeddings
Di Nezza, E., Palatucci, G., Valdinoci, E. (2012). Hitchhiker's guide to the fractional Sobolev spaces. BULLETIN DES SCIENCES MATHEMATIQUES, 136(5), 521-573 [10.1016/j.bulsci.2011.12.004].
Di Nezza, E; Palatucci, G; Valdinoci, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/89920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3131
  • ???jsp.display-item.citation.isi??? 3115
social impact