Quadratic Powell-Sabin splines and their rational extension, the so-called NURPS surfaces, are an interesting alternative for classical tensor-product NURBS in the context of isogeometric analysis, because they allow the use of local refinements while retaining a B-spline like representation and exact description of conic sections. In this paper we present a simple and effective strategy to convert a given planar geometry defined by a quadratic NURBS representation into a NURPS representation, suitable for the analysis. (C) 2012 Elsevier B.V. All rights reserved.
Speleers, H., Manni, C., Pelosi, F. (2013). From NURBS to NURPS geometries. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 255, 238-254 [10.1016/j.cma.2012.11.012].
From NURBS to NURPS geometries
Speleers H.;Manni C.;Pelosi F.
2013-01-01
Abstract
Quadratic Powell-Sabin splines and their rational extension, the so-called NURPS surfaces, are an interesting alternative for classical tensor-product NURBS in the context of isogeometric analysis, because they allow the use of local refinements while retaining a B-spline like representation and exact description of conic sections. In this paper we present a simple and effective strategy to convert a given planar geometry defined by a quadratic NURBS representation into a NURPS representation, suitable for the analysis. (C) 2012 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
CMAM2013_published.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
4.47 MB
Formato
Adobe PDF
|
4.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.