We construct a family of spectral triples for the Sierpinski gasket K . For suitable values of the parameters, we determine the dimensional spectrum and recover the Hausdorff measure of K in terms of the residue of the volume functional a→tr(a|D|−s)a→tr(a|D|−s) at its abscissa of convergence dDdD, which coincides with the Hausdorff dimension dHdH of the fractal. We determine the associated Connes' distance showing that it is bi-Lipschitz equivalent to the distance on K induced by the Euclidean metric of the plane, and show that the pairing of the associated Fredholm module with (odd) K-theory is non-trivial. When the parameters belong to a suitable range, the abscissa of convergence δDδD of the energy functional a→tr(|D|−s/2|[D,a]|2|D|−s/2)a→tr(|D|−s/2|[D,a]|2|D|−s/2) takes the value dE=log(12/5)log2, which we call energy dimension, and the corresponding residue gives the standard Dirichlet form on K.

Cipriani, F., Guido, D., Isola, T., Sauvageot, J. (2014). Spectral triples for the Sierpinski gasket. JOURNAL OF FUNCTIONAL ANALYSIS, 266(8), 4809-4869 [10.1016/j.jfa.2014.02.013].

Spectral triples for the Sierpinski gasket

GUIDO, DANIELE;ISOLA, TOMMASO;
2014-01-01

Abstract

We construct a family of spectral triples for the Sierpinski gasket K . For suitable values of the parameters, we determine the dimensional spectrum and recover the Hausdorff measure of K in terms of the residue of the volume functional a→tr(a|D|−s)a→tr(a|D|−s) at its abscissa of convergence dDdD, which coincides with the Hausdorff dimension dHdH of the fractal. We determine the associated Connes' distance showing that it is bi-Lipschitz equivalent to the distance on K induced by the Euclidean metric of the plane, and show that the pairing of the associated Fredholm module with (odd) K-theory is non-trivial. When the parameters belong to a suitable range, the abscissa of convergence δDδD of the energy functional a→tr(|D|−s/2|[D,a]|2|D|−s/2)a→tr(|D|−s/2|[D,a]|2|D|−s/2) takes the value dE=log(12/5)log2, which we call energy dimension, and the corresponding residue gives the standard Dirichlet form on K.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Self-similar fractals; Noncommutative geometry; Dirichlet forms
Cipriani, F., Guido, D., Isola, T., Sauvageot, J. (2014). Spectral triples for the Sierpinski gasket. JOURNAL OF FUNCTIONAL ANALYSIS, 266(8), 4809-4869 [10.1016/j.jfa.2014.02.013].
Cipriani, F; Guido, D; Isola, T; Sauvageot, J
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
130213CGIS02.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/89862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 31
social impact