OBJECTIVE: To assess the feasibility of offering array-based comparative genomic hybridization testing for prenatal diagnosis as a first-line test, a prospective study was performed, comparing the results achieved from array comparative genomic hybridization (aCGH) with those obtained from conventional karyotype. METHOD: Women undergoing amniocentesis or chorionic villus sampling were offered aCGH analysis. A total of 1037 prenatal samples were processed in parallel using both aCGH and G-banding for standard karyotyping. Specimen types included amniotic fluid (89.0%), chorionic villus sampling (9.5%) and cultured amniocytes (1.5%). RESULTS: Chromosomal abnormalities were identified in 34 (3.3%) samples; in 9 out of 34 cases (26.5%) aCGH detected pathogenic copy number variations that would not have been found if only a standard karyotype had been performed. aCGH was also able to detect chromosomal mosaicism at as low as a 10% level. There was complete concordance between the conventional karyotyping and aCGH results, except for 2 cases that were only correctly diagnosed by aCGH. CONCLUSIONS: This study demonstrates that aCGH represents an improved diagnostic tool for prenatal detection of chromosomal abnormalities. Although larger studies are needed, our results provide further evidence on the feasibility of introducing aCGH as a first-line diagnostic test in routine prenatal diagnosis practice.
Fiorentino, F., Napoletano, S., Fiorina Caiazzo, F., Bono, S., Spizzichino, L., Michiorri, S., et al. (2012). The use of chromosome microarray analysis as a first-line test in low risk pregnancies. PRENATAL DIAGNOSIS, 32, 6-7 [10.1111/j.1097-0883.2012.03905.x].
The use of chromosome microarray analysis as a first-line test in low risk pregnancies
RIZZO, GIUSEPPE;
2012-01-01
Abstract
OBJECTIVE: To assess the feasibility of offering array-based comparative genomic hybridization testing for prenatal diagnosis as a first-line test, a prospective study was performed, comparing the results achieved from array comparative genomic hybridization (aCGH) with those obtained from conventional karyotype. METHOD: Women undergoing amniocentesis or chorionic villus sampling were offered aCGH analysis. A total of 1037 prenatal samples were processed in parallel using both aCGH and G-banding for standard karyotyping. Specimen types included amniotic fluid (89.0%), chorionic villus sampling (9.5%) and cultured amniocytes (1.5%). RESULTS: Chromosomal abnormalities were identified in 34 (3.3%) samples; in 9 out of 34 cases (26.5%) aCGH detected pathogenic copy number variations that would not have been found if only a standard karyotype had been performed. aCGH was also able to detect chromosomal mosaicism at as low as a 10% level. There was complete concordance between the conventional karyotyping and aCGH results, except for 2 cases that were only correctly diagnosed by aCGH. CONCLUSIONS: This study demonstrates that aCGH represents an improved diagnostic tool for prenatal detection of chromosomal abnormalities. Although larger studies are needed, our results provide further evidence on the feasibility of introducing aCGH as a first-line diagnostic test in routine prenatal diagnosis practice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.