New iterative reduced-rank regression procedures for seasonal cointegration analysis were proposed. The suggested methods are motivated by the idea that modelling the cointegration restrictions jointly at different frequencies may increase efficiency in finite samples. Monte Carlo simulations indicate that the new tests and estimators perform well with respect to already existing statistical procedures.

Cubadda, G., Omtzigt, P. (2005). Small-sample improvements in the statistical analysis of seasonally cointegrated systems. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 49(2), 333-348 [10.1016/j.csda.2004.05.016].

Small-sample improvements in the statistical analysis of seasonally cointegrated systems

CUBADDA, GIANLUCA;
2005-01-01

Abstract

New iterative reduced-rank regression procedures for seasonal cointegration analysis were proposed. The suggested methods are motivated by the idea that modelling the cointegration restrictions jointly at different frequencies may increase efficiency in finite samples. Monte Carlo simulations indicate that the new tests and estimators perform well with respect to already existing statistical procedures.
2005
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore SECS-S/03 - STATISTICA ECONOMICA
English
Con Impact Factor ISI
seasonal cointegration; reduced rank regression
Cubadda, G., Omtzigt, P. (2005). Small-sample improvements in the statistical analysis of seasonally cointegrated systems. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 49(2), 333-348 [10.1016/j.csda.2004.05.016].
Cubadda, G; Omtzigt, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Cubadda&Omtzigt_CSDA.pdf

accesso aperto

Descrizione: Articolo principale
Dimensione 223.14 kB
Formato Adobe PDF
223.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/8939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact