We present a new additive basis for the mod-2 cohomology of symmetric groups, along with explicit rules for multiplication and application of Steenrod operations in that basis. The key organizational tool is a Hopf ring structure introduced by Strickland and Turner. We elucidate some of the relationships between our approach and previous approaches to the homology and cohomology of symmetric groups.

Giusti, C., Salvatore, P., Sinha, D. (2012). The mod-2 cohomology rings of symmetric groups. JOURNAL OF TOPOLOGY, 5(1), 169-198 [10.1112/jtopol/jtr031].

The mod-2 cohomology rings of symmetric groups

SALVATORE, PAOLO;
2012-01-01

Abstract

We present a new additive basis for the mod-2 cohomology of symmetric groups, along with explicit rules for multiplication and application of Steenrod operations in that basis. The key organizational tool is a Hopf ring structure introduced by Strickland and Turner. We elucidate some of the relationships between our approach and previous approaches to the homology and cohomology of symmetric groups.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Giusti, C., Salvatore, P., Sinha, D. (2012). The mod-2 cohomology rings of symmetric groups. JOURNAL OF TOPOLOGY, 5(1), 169-198 [10.1112/jtopol/jtr031].
Giusti, C; Salvatore, P; Sinha, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JTopologyVersion.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 676.72 kB
Formato Adobe PDF
676.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/89101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact