We consider the double-barrier inverse first-passage time (IFPT) problem for Wiener process X(t), starting from a random position eta. Let a < b such that P (a < eta < b) = 1, and F an assigned distribution function. The problem consists of finding the distribution of eta such that the first-exit time of X(t) from the interval (a, b) has distribution F. Besides results for the Brownian motion with drift, we obtain some extensions to more general one-dimensional diffusions and we show how to find an approximate solution to the IFPT problem in the case of time varying barriers. (C) 2012 Elsevier B.V. All rights reserved.

Abundo, M.r. (2013). The double-barrier inverse first-passage problem for Wiener process with random starting point. STATISTICS & PROBABILITY LETTERS, 83(1), 168-176 [10.1016/j.spl.2012.09.006].

The double-barrier inverse first-passage problem for Wiener process with random starting point

ABUNDO, MARIO ROSOLINO
2013-01-01

Abstract

We consider the double-barrier inverse first-passage time (IFPT) problem for Wiener process X(t), starting from a random position eta. Let a < b such that P (a < eta < b) = 1, and F an assigned distribution function. The problem consists of finding the distribution of eta such that the first-exit time of X(t) from the interval (a, b) has distribution F. Besides results for the Brownian motion with drift, we obtain some extensions to more general one-dimensional diffusions and we show how to find an approximate solution to the IFPT problem in the case of time varying barriers. (C) 2012 Elsevier B.V. All rights reserved.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
First-passage time; Inverse first-passage problem; Diffusion
Abundo, M.r. (2013). The double-barrier inverse first-passage problem for Wiener process with random starting point. STATISTICS & PROBABILITY LETTERS, 83(1), 168-176 [10.1016/j.spl.2012.09.006].
Abundo, Mr
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
abundo12d.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 831.52 kB
Formato Adobe PDF
831.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/89072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact