We study an inverse first-passage-time problem for Wiener process X(t) subject to random jumps from a boundary c. Let be given a threshold S > X(0); and a distribution function F on [0, + ∞). The problem consists of finding the distribution of the jumps which occur when X(t) hits c, so that the first-passage time of X(t) through S has distribution F.

Abundo, M.r. (2013). Solving an Inverse First-Passage-Time Problem for Wiener Process Subject to Random Jumps from a Boundary. STOCHASTIC ANALYSIS AND APPLICATIONS, 31(4), 695-707 [10.1080/07362994.2013.800358].

Solving an Inverse First-Passage-Time Problem for Wiener Process Subject to Random Jumps from a Boundary

ABUNDO, MARIO ROSOLINO
2013-01-01

Abstract

We study an inverse first-passage-time problem for Wiener process X(t) subject to random jumps from a boundary c. Let be given a threshold S > X(0); and a distribution function F on [0, + ∞). The problem consists of finding the distribution of the jumps which occur when X(t) hits c, so that the first-passage time of X(t) through S has distribution F.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
First-passage time; One-dimensional diffusion; Random jump
Abundo, M.r. (2013). Solving an Inverse First-Passage-Time Problem for Wiener Process Subject to Random Jumps from a Boundary. STOCHASTIC ANALYSIS AND APPLICATIONS, 31(4), 695-707 [10.1080/07362994.2013.800358].
Abundo, Mr
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
abundo13b.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 156.16 kB
Formato Adobe PDF
156.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/89069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact