Fix integers $r,d,s,\pi$ with $r\geq 4$, $d\gg s$, $r-1\leq s \leq 2r-4$, and $\pi\geq 0$. Refining classical results for the genus of a projective curve, we exhibit a sharp upper bound for the arithmetic genus $p_a(C)$ of an integral projective curve $C\subset {\mathbb{P}^r}$ of degree $d$, assuming that $C$ is not contained in any surface of degree $<s$, and not contained in any surface of degree $s$ with sectional genus $> \pi$. Next we discuss other types of bound for $p_a(C)$, involving conditions on the entire Hilbert polynomial of the integral surfaces on which $C$ may lie.

DI GENNARO, V., & Franco, D. (2012). Refining Castelnuovo-Halphen bounds. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 61(1), 91-106 [10.1007/s12215-011-0077-8].

Refining Castelnuovo-Halphen bounds

DI GENNARO, VINCENZO;
2012

Abstract

Fix integers $r,d,s,\pi$ with $r\geq 4$, $d\gg s$, $r-1\leq s \leq 2r-4$, and $\pi\geq 0$. Refining classical results for the genus of a projective curve, we exhibit a sharp upper bound for the arithmetic genus $p_a(C)$ of an integral projective curve $C\subset {\mathbb{P}^r}$ of degree $d$, assuming that $C$ is not contained in any surface of degree $ \pi$. Next we discuss other types of bound for $p_a(C)$, involving conditions on the entire Hilbert polynomial of the integral surfaces on which $C$ may lie.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - Geometria
English
Senza Impact Factor ISI
DI GENNARO, V., & Franco, D. (2012). Refining Castelnuovo-Halphen bounds. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 61(1), 91-106 [10.1007/s12215-011-0077-8].
DI GENNARO, V; Franco, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Refiningv1rev.pdf

non disponibili

Descrizione: bozza finale post-referaggio
Licenza: Copyright dell'editore
Dimensione 245.34 kB
Formato Adobe PDF
245.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/88575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact