In this Note we present a new variational characterization of the first nontrivial curve of the Fučík spectrum for elliptic operators with Dirichlet or Neumann boundary conditions. Moreover, we describe the asymptotic behaviour and some properties of this curve and of the corresponding eigenfunctions. In particular, this new characterization allows us to compare the first curve of the Fučík spectrum with the infinitely many curves we obtained in previous works: for example, we show that these curves are all asymptotic to the same lines as the first curve, but they are all distinct from such a curve

Molle, R., Passaseo, D. (2014). On the first curve of the Fučík spectrum for elliptic operators. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 25(2), 141-146 [10.4171/RLM/671].

On the first curve of the Fučík spectrum for elliptic operators

MOLLE, RICCARDO;
2014-01-01

Abstract

In this Note we present a new variational characterization of the first nontrivial curve of the Fučík spectrum for elliptic operators with Dirichlet or Neumann boundary conditions. Moreover, we describe the asymptotic behaviour and some properties of this curve and of the corresponding eigenfunctions. In particular, this new characterization allows us to compare the first curve of the Fučík spectrum with the infinitely many curves we obtained in previous works: for example, we show that these curves are all asymptotic to the same lines as the first curve, but they are all distinct from such a curve
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Molle, R., Passaseo, D. (2014). On the first curve of the Fučík spectrum for elliptic operators. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 25(2), 141-146 [10.4171/RLM/671].
Molle, R; Passaseo, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
post_print.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 99.71 kB
Formato Adobe PDF
99.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/88571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact