We prove unique continuation and maximum modulus principle for solutions to systems of differential equations and inequalities, involving complex vector fields, under conditions that generalize some weak-pseudoconcavity assumptions for the tangential Cauchy-Riemann complex.

Hill, C., Nacinovich, M. (2012). Complex vector fields, unique continuation and the maximum modulus principle. ANNALI DI MATEMATICA PURA ED APPLICATA, 191(4), 761-769 [10.1007/s10231-011-0204-3].

Complex vector fields, unique continuation and the maximum modulus principle

NACINOVICH, MAURO
2012-01-01

Abstract

We prove unique continuation and maximum modulus principle for solutions to systems of differential equations and inequalities, involving complex vector fields, under conditions that generalize some weak-pseudoconcavity assumptions for the tangential Cauchy-Riemann complex.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Complex vector fields; Maximum modulus principle; Weak unique continuation; Abstract CR manifold
Hill, C., Nacinovich, M. (2012). Complex vector fields, unique continuation and the maximum modulus principle. ANNALI DI MATEMATICA PURA ED APPLICATA, 191(4), 761-769 [10.1007/s10231-011-0204-3].
Hill, C; Nacinovich, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/88569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact