Striatal parvalbumin-containing fast-spiking (FS) interneurons provide a powerful feedforward GABAergic inhibition on spiny projection neurons, through a widespread arborization and electrical coupling. Modulation of FS interneuron activity might therefore strongly affect striatal output. Metabotropic glutamate receptors (mGluRs) exert a modulatory action at various levels in the striatum. We performed electrophysiological recordings from a rat striatal slice preparation to investigate the effects of group I mGluR activation on both the intrinsic and synaptic properties of FS interneurons. Bath-application of the group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (3,5-DHPG), caused a dose-dependent depolarizing response. Both (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), selective mGluR1 antagonists, significantly reduced the amplitude of the membrane depolarization caused by 3,5-DHPG application. Conversely, mGluR5 antagonists, 2-methyl-6-(phenylethylnyl)pyridine hydrochloride (MPEP) and 6-methyl-2-(phenylazo)-3-pyridinol (SIB1757), were unable to affect the response to 3,5-DHPG, suggesting that only mGluR1 contributes to the 3,5-DHPG-mediated excitatory action on FS interneurons. Furthermore, mGluR1 blockade significantly decreased the amplitude of the glutamatergic postsynaptic potentials, whereas the mGluR5 antagonist application produced a small nonsignificant inhibitory effect. Surprisingly, our electron microscopic data demonstrate that the immunoreactivity for both mGluR1a and mGluR5 is expressed extrasynaptically on the plasma membrane of parvalbumin-immunoreactive dendrites of FS interneurons. Together, these results suggest that despite a common pattern of distribution, mGluR1 and mGluR5 exert distinct functions in the modulation of FS interneuron activity.
Bonsi, P., Sciamanna, G., Mitrano, D., Cuomo, D., Bernardi, G., Platania, P., et al. (2007). Functional and ultrastructural analysis of group I mGluR in striatal fast-spiking interneurons. EUROPEAN JOURNAL OF NEUROSCIENCE, 25(5), 1319-1331 [10.1111/j.1460-9568.2007.05383.x].
Functional and ultrastructural analysis of group I mGluR in striatal fast-spiking interneurons
SCIAMANNA, GIUSEPPE;BERNARDI, GIORGIO;PISANI, ANTONIO
2007-03-01
Abstract
Striatal parvalbumin-containing fast-spiking (FS) interneurons provide a powerful feedforward GABAergic inhibition on spiny projection neurons, through a widespread arborization and electrical coupling. Modulation of FS interneuron activity might therefore strongly affect striatal output. Metabotropic glutamate receptors (mGluRs) exert a modulatory action at various levels in the striatum. We performed electrophysiological recordings from a rat striatal slice preparation to investigate the effects of group I mGluR activation on both the intrinsic and synaptic properties of FS interneurons. Bath-application of the group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (3,5-DHPG), caused a dose-dependent depolarizing response. Both (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), selective mGluR1 antagonists, significantly reduced the amplitude of the membrane depolarization caused by 3,5-DHPG application. Conversely, mGluR5 antagonists, 2-methyl-6-(phenylethylnyl)pyridine hydrochloride (MPEP) and 6-methyl-2-(phenylazo)-3-pyridinol (SIB1757), were unable to affect the response to 3,5-DHPG, suggesting that only mGluR1 contributes to the 3,5-DHPG-mediated excitatory action on FS interneurons. Furthermore, mGluR1 blockade significantly decreased the amplitude of the glutamatergic postsynaptic potentials, whereas the mGluR5 antagonist application produced a small nonsignificant inhibitory effect. Surprisingly, our electron microscopic data demonstrate that the immunoreactivity for both mGluR1a and mGluR5 is expressed extrasynaptically on the plasma membrane of parvalbumin-immunoreactive dendrites of FS interneurons. Together, these results suggest that despite a common pattern of distribution, mGluR1 and mGluR5 exert distinct functions in the modulation of FS interneuron activity.File | Dimensione | Formato | |
---|---|---|---|
EJN_2007.pdf
solo utenti autorizzati
Licenza:
Non specificato
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.