The striatum is richly innervated by serotonergic afferents from the raphe nucleus. We explored the effects of this input on striatal cholinergic interneurons from rat brain slices, by means of both conventional intracellular and whole-cell patch-clamp recordings. Bath-applied serotonin (5-HT, 3-300 microM), induced a dose-dependent membrane depolarization and increased the rate of spiking. This effect was mimicked by the 5-HT reuptake blockers citalopram and fluvoxamine. In voltage-clamped neurons, 5-HT induced an inward current, whose reversal potential was close to the K(+) equilibrium potential. Accordingly, the involvement of K(+) channels was confirmed either by increasing extracellular K(+) concentration and by blockade of K(+) channels with barium. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) profiling demonstrated the presence of 5-HT2C, 5-HT6, and 5-HT7 receptor mRNAs in identified cholinergic interneurons. The depolarization/inward current induced by 5-HT was partially mimicked by the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine and antagonized by both ketanserin and the selective 5-HT2C antagonist RS102221, whereas the selective 5-HT3 and 5-HT4 receptor antagonists tropisetron and RS23597-190 had no effect. The depolarizing response to 5-HT was also reduced by the selective 5-HT6 and 5-HT7 receptor antagonists SB258585 and SB269970, respectively, and mimicked by the 5-HT7 agonist, 5-CT. Accordingly, activation of either 5-HT6 or 5-HT7 receptor induced an inward current. The 5-HT response was attenuated by U73122, blocker of phospholipase C, and by SQ22,536, an inhibitor of adenylyl cyclase. These results suggest that 5-HT released by serotonergic fibers originating in the raphe nuclei has a potent excitatory effect on striatal cholinergic interneurons.

Bonsi, P., Cuomo, D., Ding, J., Sciamanna, G., Ulrich, S., Tscherter, A., et al. (2007). Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. NEUROPSYCHOPHARMACOLOGY, 32(8), 1840-1854 [10.1038/sj.npp.1301294].

Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors

SCIAMANNA, GIUSEPPE;BERNARDI, GIORGIO;PISANI, ANTONIO
2007-08-01

Abstract

The striatum is richly innervated by serotonergic afferents from the raphe nucleus. We explored the effects of this input on striatal cholinergic interneurons from rat brain slices, by means of both conventional intracellular and whole-cell patch-clamp recordings. Bath-applied serotonin (5-HT, 3-300 microM), induced a dose-dependent membrane depolarization and increased the rate of spiking. This effect was mimicked by the 5-HT reuptake blockers citalopram and fluvoxamine. In voltage-clamped neurons, 5-HT induced an inward current, whose reversal potential was close to the K(+) equilibrium potential. Accordingly, the involvement of K(+) channels was confirmed either by increasing extracellular K(+) concentration and by blockade of K(+) channels with barium. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) profiling demonstrated the presence of 5-HT2C, 5-HT6, and 5-HT7 receptor mRNAs in identified cholinergic interneurons. The depolarization/inward current induced by 5-HT was partially mimicked by the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine and antagonized by both ketanserin and the selective 5-HT2C antagonist RS102221, whereas the selective 5-HT3 and 5-HT4 receptor antagonists tropisetron and RS23597-190 had no effect. The depolarizing response to 5-HT was also reduced by the selective 5-HT6 and 5-HT7 receptor antagonists SB258585 and SB269970, respectively, and mimicked by the 5-HT7 agonist, 5-CT. Accordingly, activation of either 5-HT6 or 5-HT7 receptor induced an inward current. The 5-HT response was attenuated by U73122, blocker of phospholipase C, and by SQ22,536, an inhibitor of adenylyl cyclase. These results suggest that 5-HT released by serotonergic fibers originating in the raphe nuclei has a potent excitatory effect on striatal cholinergic interneurons.
ago-2007
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Animals; Drug Interactions; Dose-Response Relationship, Drug; Corpus Striatum; Receptors, Serotonin; Enzyme Inhibitors; Electric Stimulation; Serotonin; Rats; Interneurons; Serotonin Agents; Patch-Clamp Techniques; Rats, Wistar; Membrane Potentials; Acetylcholine; Male
Bonsi, P., Cuomo, D., Ding, J., Sciamanna, G., Ulrich, S., Tscherter, A., et al. (2007). Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. NEUROPSYCHOPHARMACOLOGY, 32(8), 1840-1854 [10.1038/sj.npp.1301294].
Bonsi, P; Cuomo, D; Ding, J; Sciamanna, G; Ulrich, S; Tscherter, A; Bernardi, G; Surmeier, D; Pisani, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
NPP_2007.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 409.03 kB
Formato Adobe PDF
409.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/88289
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 120
  • ???jsp.display-item.citation.isi??? 114
social impact