The growth of a diamond film having a good structure and a satisfactory adhesion, with a thickness of about 30-50 μm, on a tenacious substrate act to be proof for the mechanical machining, is a non resolved problem. The diamond coating is one of the most important coating, since the hardness is correlated with the self-lubrication that is greater wear resistance. The WC-Co is a very good substrate for the diamond deposition, because the combination of it’s high hardness and toughness of Co maximize it’s mechanical properties. It is proof of its wide dissemination, which has now become quite competitive from an economic standpoint. On the opposite the diamond deposition on that substrate is quite hard, and the reason is the presence of the binder (Co), that induce the formation of a layer of graphite in the first step of the deposition. It follows a negative effect on the process. This is the reason to work out new treatments to submit the substrate before the deposition process. The aim of this work is to study and compare different pre-treatments for the substrate. In particular the authors compared the actual treatments with the experimental Fluized Bed Machining (FBM). In particular the combined effect of pretreatments and substrate microstructure on the adhesive toughness and wear rate of CVD diamond was analyzed. In the light of this consideration the pre-treatments of the WC-Co becomes necessary to overcome several drawbacks, including the low nucleation density of the diamond, the presence of Co, the different coefficient of thermal expansion and surface finishing. The low nucleation density leads to the presence of cavities on the interface subsequent intensification of efforts and propagation of fractures in the case of applying an external stress. The presence of Co tends to solubilized the carbon without formation of stable carbide, preventing the formation of a stable nucleus of carbon on the surface. The different coefficient of thermal expansion for the coating and the substrate induce residual thermal stress in the film due to the cooling from the temperature of treatments to room temperature ( R.T.). This differential shrinkage induce a shear stress on the interface that may cause detaching of the coating when exceeding the critical value. A smooth surface generate a scarcely sufficient adhesion of the diamond film, on the other side a roughness surface increase the contact area, and is also a mechanical effect that ensure a better anchorage of the coating. The used techniques to get round these difficulties are several today. Among these it’s possible to indicate chemical “etching” processes, interlayer deposition, heat treatment and mechanical treatment, i.e. the FBM method. The most diffuse pre-treatment is the first, that removes the binding on the surface but, attacking the WC grains, it damages the substrate making strong less. The application about interlayer by PVD arc method is less diffused, that allows to reduce lubricanting effect of the graphite operating as a “ diffusion barrier”. Then the interlayers, when they have been inseminated, induce the nucleation and the increase of the diamond. By this way the substrate preparation time are very long and the generated surface comes out smooth one more time, but they have advantage of not weakening the interface. Instead the WC-Co heat treatments, carried out by inert atmosphere, determinate modification of the surface composition, producing a tungsten metallic layer. An other pre-treatment type is the FBM working by diamond powder, that causes selective abrasion about the binder, the insemination by diamond micro-particles and the increase of the surface roughness by micro-craterization. This technique can be directly used both about the WC-Co substrate and about the interlayer, where it produces only a surface wrinkling and a seeding. The author tested and compared directly the techniques of chemical etching, interlayer and the FBM, carried out both on the WC-Co substrate and on interlayer substrate.Every no pre-treated sample by FBM was ultrasonically seeded for 15 min in 1/ 4 mm diamond suspension. Before film deposition, diffractometric and morphological examinations have been carried out on pre-treated samples by contact profilometry and electron scanning microscopy (SEM). The diffraction confirmed the FBM efficacy about removing surface Co, meanwhile the profilometry makes the treated sample by mechanical method have a surface more suitable to deposition. After that the samples have been covered with diamond by hot filament chemical vapour deposition for term of 10 hours. One more time diffractometric and profilometric analysis have been used to value morphology and quality about the diamond film obtained on the various samples. Then diamond film adhesion and wear have been valued by pin-on-disch andsliding test. The FBM results a effective choice to the now deep-rooted techniques, especially if it is applied on interlayer. Obviously more examinations will be necessary to optimize all process parameters about this innovative technique.
La crescita di un film di diamante di buona struttura e sufficiente adesione, con spessori significativi (fino a 30-50 µm), su un substrato con sufficiente tenacità da resistere alle sollecitazioni meccaniche dei processi di lavorazione, è un problema non ancora risolto completamente. Il rivestimento in diamante è tra i più interessanti, in quanto l’elevata durezza è abbinata alle proprietà di autolubrificazione, il che equivale a dire minor attrito e quindi una maggiore resistenza all’usura. Un ottimo substrato per la deposizione del film di diamante è il sinterizzato in Carburo di Tungsteno, in quanto l’elevata durezza è combinata all’ottima tenacità del legante che ne massimizza le proprietà meccaniche, inoltre, la vasta diffusione ha ormai reso piuttosto competitivo il prezzo. Di contro, la deposizione di strati di diamante su substrati in WC-Co è complessa; il legante Co ha un effetto nocivo sul processo, portando alla formazione di uno strato grafitico nelle prime fasi della deposizione, per cui negli ultimi anni sono stati studiati diversi tipi di pretrattamenti a cui sottoporre il substrato prima del processo di deposizione. Con questo lavoro ci si è prefissati di studiare e confrontare le varie tipologie di pretrattamento del substrato, in particolare sono state messe a confronto le tecniche attualmente in uso con quella ancora in via sperimentale rappresentata dal trattamento al letto fluido. Si rende necessario prettatatre il WC-Co , per ovviare ai seguenti inconvenienti, fra i quali la bassa densità di nucleazione del diamante, la presenza di Cobalto, il diverso coefficiente di espansione termica e la superficie troppo liscia. Una bassa densità di nucleazione del diamante, porta alla presenza di cavità all’interfaccia con conseguente intensificazione degli sforzi e propagazione di fratture in caso di applicazione di uno stress esterno al rivestimento. La presenza di Cobalto, tende a solubilizzare il carbonio senza formazione di carburi stabili, impedendo la formazione di un nucleo stabile di carbonio sulla superficie. Il diverso coefficiente di espansione termica dei materiali costituenti il rivestimento e il substrato, produce stress termici residui nel film a seguito del raffreddamento dalla temperatura di deposizione alla temperatura ambiente. Tale contrazione differenziale induce una sollecitazione di taglio all’interfaccia che può causare la delaminazione del rivestimento se viene superato un certo valore critico. La superficie liscia è tale da generare scarsa adesione del film di diamante. Infatti un’interfaccia scabra oltre ad aumentare la superficie di contatto, esercita anche un effetto meccanico, garantendo un miglior ancoraggio del coating. Diverse sono le tecniche oggi in uso per ovviare a tali difficoltà, tra essi ricordiamo i processi di "etching" chimico, le deposizione di interlayer , i trattamenti termici e trattamenti meccanici ovvero trattamenti al letto fluido. Il pretrattamento più diffuso è l’etching chimico, che elimina il legante in superficie ma, attaccando anche i grani di WC, danneggia il substrato rendendolo meno tenace. Meno diffusa è l’applicazione di interlayer mediante PVD ad arco che permette di ridurre l’effetto lubrificante della grafite agendo come “barriera diffusiva”; infatti, gli interlayer, una volta inseminati, promuovono la nucleazione e l’accrescimento del diamante. I tempi di preparazione dei substrati sono molto lunghi ma ha il vantaggio di non indebolire l’interfaccia. I trattamenti termici del WC-Co effettuati in atmosfera inerte determinano modifiche della composizione superficiale creando uno strato di tungsteno metallico. Altro pretrattamento, da noi proposto, è la lavorazione al letto fluido con polveri di diamante, in modo da provocare l’abrasione selettiva del legante, l’inseminazione con microparticelle di diamante e l’aumento della rugosità superficiale mediante micro-craterizzazione. Questa tecnica può essere direttamente utilizzata sia sul substrato Wc-Co e sia sul sull’interlayer, dove in questo ultimo genera solo il microcorugamento superficiale e il seeding. L’autore ha esaminato e messo a diretto confronto le tecniche del etching chimici, del interlayer e del trattamento al letto fluido effettuato direttamente sia su substrati in Wc-Co e sia su substrati con interlayer. Sui campioni cosi pretrattati, prima della deposizione del film, sono state effettuate indagini diffratomiche e morfologiche tramite profilometrie a contatto e microscopia scansione elettronica (SEM). La diffratometria ha confermato l’efficacia del letto fluido nel rimuovere il colbalto superficiale, inoltre dalla profilometria è emerso che i campioni trattati per via meccanica offrono una superficie piu adatta allla deposizione. Di seguito i campioni sono stati rivestiti di diamante tramite un reattore Hot filament chimical vapour deposition per un durata di 10 h. Ancora una volta si è fatto uso di esami diffratomici e profilometrici per valutare la morfologia e la qualità del film di diamante. Il letto fluido risulta essere un valida alternativa alle ormai radicate teniche soprattutto se applicato sull’interlayer. Chiaramente saranno necessarie ulteriori sperimentazioni per portare alla ottimizzazione di tutti i paramentri di processi di questa innovativa tecnica.
Rubino, G. (2009). HF-CVD di film di diamante policristallino su substrati in metallo duro: adesione superficiale, resistenza all'usura, sforzi in lavorazione.
HF-CVD di film di diamante policristallino su substrati in metallo duro: adesione superficiale, resistenza all'usura, sforzi in lavorazione
RUBINO, GIANLUCA
2009-04-28
Abstract
The growth of a diamond film having a good structure and a satisfactory adhesion, with a thickness of about 30-50 μm, on a tenacious substrate act to be proof for the mechanical machining, is a non resolved problem. The diamond coating is one of the most important coating, since the hardness is correlated with the self-lubrication that is greater wear resistance. The WC-Co is a very good substrate for the diamond deposition, because the combination of it’s high hardness and toughness of Co maximize it’s mechanical properties. It is proof of its wide dissemination, which has now become quite competitive from an economic standpoint. On the opposite the diamond deposition on that substrate is quite hard, and the reason is the presence of the binder (Co), that induce the formation of a layer of graphite in the first step of the deposition. It follows a negative effect on the process. This is the reason to work out new treatments to submit the substrate before the deposition process. The aim of this work is to study and compare different pre-treatments for the substrate. In particular the authors compared the actual treatments with the experimental Fluized Bed Machining (FBM). In particular the combined effect of pretreatments and substrate microstructure on the adhesive toughness and wear rate of CVD diamond was analyzed. In the light of this consideration the pre-treatments of the WC-Co becomes necessary to overcome several drawbacks, including the low nucleation density of the diamond, the presence of Co, the different coefficient of thermal expansion and surface finishing. The low nucleation density leads to the presence of cavities on the interface subsequent intensification of efforts and propagation of fractures in the case of applying an external stress. The presence of Co tends to solubilized the carbon without formation of stable carbide, preventing the formation of a stable nucleus of carbon on the surface. The different coefficient of thermal expansion for the coating and the substrate induce residual thermal stress in the film due to the cooling from the temperature of treatments to room temperature ( R.T.). This differential shrinkage induce a shear stress on the interface that may cause detaching of the coating when exceeding the critical value. A smooth surface generate a scarcely sufficient adhesion of the diamond film, on the other side a roughness surface increase the contact area, and is also a mechanical effect that ensure a better anchorage of the coating. The used techniques to get round these difficulties are several today. Among these it’s possible to indicate chemical “etching” processes, interlayer deposition, heat treatment and mechanical treatment, i.e. the FBM method. The most diffuse pre-treatment is the first, that removes the binding on the surface but, attacking the WC grains, it damages the substrate making strong less. The application about interlayer by PVD arc method is less diffused, that allows to reduce lubricanting effect of the graphite operating as a “ diffusion barrier”. Then the interlayers, when they have been inseminated, induce the nucleation and the increase of the diamond. By this way the substrate preparation time are very long and the generated surface comes out smooth one more time, but they have advantage of not weakening the interface. Instead the WC-Co heat treatments, carried out by inert atmosphere, determinate modification of the surface composition, producing a tungsten metallic layer. An other pre-treatment type is the FBM working by diamond powder, that causes selective abrasion about the binder, the insemination by diamond micro-particles and the increase of the surface roughness by micro-craterization. This technique can be directly used both about the WC-Co substrate and about the interlayer, where it produces only a surface wrinkling and a seeding. The author tested and compared directly the techniques of chemical etching, interlayer and the FBM, carried out both on the WC-Co substrate and on interlayer substrate.Every no pre-treated sample by FBM was ultrasonically seeded for 15 min in 1/ 4 mm diamond suspension. Before film deposition, diffractometric and morphological examinations have been carried out on pre-treated samples by contact profilometry and electron scanning microscopy (SEM). The diffraction confirmed the FBM efficacy about removing surface Co, meanwhile the profilometry makes the treated sample by mechanical method have a surface more suitable to deposition. After that the samples have been covered with diamond by hot filament chemical vapour deposition for term of 10 hours. One more time diffractometric and profilometric analysis have been used to value morphology and quality about the diamond film obtained on the various samples. Then diamond film adhesion and wear have been valued by pin-on-disch andsliding test. The FBM results a effective choice to the now deep-rooted techniques, especially if it is applied on interlayer. Obviously more examinations will be necessary to optimize all process parameters about this innovative technique.File | Dimensione | Formato | |
---|---|---|---|
Prima parte.pdf
accesso aperto
Descrizione: Thesis - Part 1
Dimensione
6.16 MB
Formato
Adobe PDF
|
6.16 MB | Adobe PDF | Visualizza/Apri |
Seconda parte.pdf
accesso aperto
Descrizione: Thesis - Part 2
Dimensione
7.39 MB
Formato
Adobe PDF
|
7.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.