We prove the large deviation principle for the posterior distributions on the (unknown) parameter of a multivariate autoregressive process with i.i.d. Normal innovations. As a particular case, we recover a previous result for univariate first-order autoregressive processes. We also show that the rate function can be expressed in terms of the divergence between two spectral densities.
Macci, C., Trapani, S. (2013). Large deviations for posterior distributions on the parameter of a multivariate AR(p) process. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 65(4), 703-719 [10.1007/s10463-012-0389-2].
Large deviations for posterior distributions on the parameter of a multivariate AR(p) process
MACCI, CLAUDIO;TRAPANI, STEFANO
2013-01-01
Abstract
We prove the large deviation principle for the posterior distributions on the (unknown) parameter of a multivariate autoregressive process with i.i.d. Normal innovations. As a particular case, we recover a previous result for univariate first-order autoregressive processes. We also show that the rate function can be expressed in terms of the divergence between two spectral densities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
trapani1.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
240.26 kB
Formato
Adobe PDF
|
240.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.