The main results in this paper concern large and moderate deviations for the radial component of a n-dimensional hyperbolic Brownian motion (for n≥2) on the Poincaré half-space. We also investigate the asymptotic behavior of the hitting probability Pη(T(n)η1<∞) of a ball of radius η1, as the distance η of the starting point of the hyperbolic Brownian motion goes to infinity.

Cammarota, V., De Gregorio, A., Macci, C. (2014). On the asymptotic behavior of the hyperbolic Brownian motion. JOURNAL OF STATISTICAL PHYSICS, 154(6), 1550-1568 [10.1007/s10955-014-0939-5].

On the asymptotic behavior of the hyperbolic Brownian motion

MACCI, CLAUDIO
2014-01-01

Abstract

The main results in this paper concern large and moderate deviations for the radial component of a n-dimensional hyperbolic Brownian motion (for n≥2) on the Poincaré half-space. We also investigate the asymptotic behavior of the hitting probability Pη(T(n)η1<∞) of a ball of radius η1, as the distance η of the starting point of the hyperbolic Brownian motion goes to infinity.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Cammarota, V., De Gregorio, A., Macci, C. (2014). On the asymptotic behavior of the hyperbolic Brownian motion. JOURNAL OF STATISTICAL PHYSICS, 154(6), 1550-1568 [10.1007/s10955-014-0939-5].
Cammarota, V; De Gregorio, A; Macci, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cammarotadegregoriomacciJoSP2014.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 241.81 kB
Formato Adobe PDF
241.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/86458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact