We investigate some large deviation problems for a random walk in continuous time {N(t);t≥0} with spatially inhomogeneous rates of alternating type. We first deal with the large deviation principle for the convergence of N(t)/t to a suitable constant. Then, the case of moderate deviations is also discussed. Motivated by possible applications in chemical physics context, we finally obtain an asymptotic lower bound for level crossing probabilities both in the case of finite and infinite horizon.

Di Crescenzo, A., Macci, C., Martinucci, B. (2014). Asymptotic results for random walks in continuous time with alternating rates. JOURNAL OF STATISTICAL PHYSICS, 154(5), 1352-1364 [10.1007/s10955-014-0928-8].

Asymptotic results for random walks in continuous time with alternating rates

MACCI, CLAUDIO;
2014-01-01

Abstract

We investigate some large deviation problems for a random walk in continuous time {N(t);t≥0} with spatially inhomogeneous rates of alternating type. We first deal with the large deviation principle for the convergence of N(t)/t to a suitable constant. Then, the case of moderate deviations is also discussed. Motivated by possible applications in chemical physics context, we finally obtain an asymptotic lower bound for level crossing probabilities both in the case of finite and infinite horizon.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Di Crescenzo, A., Macci, C., Martinucci, B. (2014). Asymptotic results for random walks in continuous time with alternating rates. JOURNAL OF STATISTICAL PHYSICS, 154(5), 1352-1364 [10.1007/s10955-014-0928-8].
Di Crescenzo, A; Macci, C; Martinucci, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ldalternatingrates2_adcmbm.pdf

accesso aperto

Licenza: Non specificato
Dimensione 289.78 kB
Formato Adobe PDF
289.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/86457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact