We consider two fractional versions of a family of nonnegative integer valued processes. We prove that their probability mass functions solve fractional Kolmogorov forward equations, and we show the overdispersion of these processes. As particular examples in this family, we can define fractional versions of some processes in the literature as the Polya-Aeppli, the Poisson Inverse Gaussian and the Negative Binomial. We also define and study some more general fractional versions with two fractional parameters.

Beghin, L., Macci, C. (2014). Fractional discrete processes: compound and mixed Poisson representations. JOURNAL OF APPLIED PROBABILITY, 51(1), 19-36.

Fractional discrete processes: compound and mixed Poisson representations

MACCI, CLAUDIO
2014-01-01

Abstract

We consider two fractional versions of a family of nonnegative integer valued processes. We prove that their probability mass functions solve fractional Kolmogorov forward equations, and we show the overdispersion of these processes. As particular examples in this family, we can define fractional versions of some processes in the literature as the Polya-Aeppli, the Poisson Inverse Gaussian and the Negative Binomial. We also define and study some more general fractional versions with two fractional parameters.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Beghin, L., Macci, C. (2014). Fractional discrete processes: compound and mixed Poisson representations. JOURNAL OF APPLIED PROBABILITY, 51(1), 19-36.
Beghin, L; Macci, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
beghinmacciJAP2014.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 201.7 kB
Formato Adobe PDF
201.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/86430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 29
social impact