We analyze an elliptic equation arising in the study of the gauged O(3) sigma model with the Chern–Simons term. In this paper, we study the asymptotic behavior of solutions and apply it to prove the uniqueness of stable solutions. However, one of the features of this nonlinear equation is the existence of stable nontopological solutions in R 2 , which implies the possibility that a stable solution which blows up at a vortex point exists. To exclude this kind of blow up behavior is one of the main difficulties which we have to overcome.

Bartolucci, D., Lee, Y., Lin, C., Onodera, M. (2015). Asymptotic analysis of solutions to a gauged O(3) sigma model. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 32, 651-685 [10.1016/j.anihpc.2014.03.001].

Asymptotic analysis of solutions to a gauged O(3) sigma model

BARTOLUCCI, DANIELE;
2015-01-01

Abstract

We analyze an elliptic equation arising in the study of the gauged O(3) sigma model with the Chern–Simons term. In this paper, we study the asymptotic behavior of solutions and apply it to prove the uniqueness of stable solutions. However, one of the features of this nonlinear equation is the existence of stable nontopological solutions in R 2 , which implies the possibility that a stable solution which blows up at a vortex point exists. To exclude this kind of blow up behavior is one of the main difficulties which we have to overcome.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
Bartolucci, D., Lee, Y., Lin, C., Onodera, M. (2015). Asymptotic analysis of solutions to a gauged O(3) sigma model. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 32, 651-685 [10.1016/j.anihpc.2014.03.001].
Bartolucci, D; Lee, Y; Lin, C; Onodera, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Bartolucci_Lee_Lin_Onodera_revised.pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 458.2 kB
Formato Adobe PDF
458.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/86269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact