A sup × inf-type inequality is proved for the regular part of conformal factors for Rieman- nian metrics on surfaces with conical singularities of positive order α > 0. The proof is based on the explicit representation formula for solutions of the singular Liouville equa- tion and generalizes to the singular case an argument by I. Shafrir.

Bartolucci, D. (2013). A sup x inf-type inequality for conformal metrics on Riemann surfaces with conical singularities. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 403(2), 571-579.

A sup x inf-type inequality for conformal metrics on Riemann surfaces with conical singularities

BARTOLUCCI, DANIELE
2013-01-01

Abstract

A sup × inf-type inequality is proved for the regular part of conformal factors for Rieman- nian metrics on surfaces with conical singularities of positive order α > 0. The proof is based on the explicit representation formula for solutions of the singular Liouville equa- tion and generalizes to the singular case an argument by I. Shafrir.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
Conformal metrics; Conical singularities; Sup plus inf and sup x inf inequalities; Singular Liouville equation
Bartolucci, D. (2013). A sup x inf-type inequality for conformal metrics on Riemann surfaces with conical singularities. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 403(2), 571-579.
Bartolucci, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/86267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact