14-3-3 proteins are a family of ubiquitous dimeric proteins that modulate many cellular functions in all eukaryotes by interacting with target proteins. 14-3-3s exist as a number of isoforms that in Arabidopsis identifies two major groups named ε and non-ε. Although isoform specificity has been demonstrated in many systems, the molecular basis for the selection of specific sequence contexts has not been fully clarified. In this study we have investigated isoform specificity by measuring the ability of different Arabidopsis 14-3-3 isoforms to activate the H+-ATPase. We observed that GF14 isoforms of the non-ε group were more effective than ε group isoforms in the interaction with the H+-ATPase and in the stimulation of its activity. Kinetic and thermodynamic parameters of the binding of GF14ε and GF14ω isoforms, representative of ε and non-ε groups respectively, with the H+-ATPase, have been determined by Surface Plasmon Resonance analysis demonstrating that the higher affinity of GF14ω is mainly due to slower dissociation. The role of the C-terminal region and of a Gly residue located in the loop 8 and conserved in all non-ε isoforms has also been studied by deletion and site-specific mutagenesis. The C-terminal domains, despite their high divergence, play an auto-inhibitory role in both isoforms and they, in addition to a specific residue located in the loop 8, contribute to isoform specificity. To investigate the generality of these findings, we have used the SPOT-synthesis technology to array a number of phosphopeptides matching known or predicted 14-3-3 binding sites present in a number of clients. The results of this approach confirmed isoform specificity in the recognition of several target peptides, suggesting that the isoform specificity may have an impact on the modulation of a variety of additional protein activities, as suggested by probing of a phosphopeptide array with members of the two 14-3-3 groups.

Pallucca, R., Visconti, S., Camoni, L., Cesareni, G., Melino, S.m., Panni, S., et al. (2014). Specificity of ε and non-ε isoforms of Arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLOS ONE, 9(3), 90764 [doi: 10.1371/journal.pone.0090764].

Specificity of ε and non-ε isoforms of Arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets.

CESARENI, GIOVANNI;MELINO, SONIA MICHAELA;PANNI, SIMONA;ADUCCI, PATRIZIA
2014-01-01

Abstract

14-3-3 proteins are a family of ubiquitous dimeric proteins that modulate many cellular functions in all eukaryotes by interacting with target proteins. 14-3-3s exist as a number of isoforms that in Arabidopsis identifies two major groups named ε and non-ε. Although isoform specificity has been demonstrated in many systems, the molecular basis for the selection of specific sequence contexts has not been fully clarified. In this study we have investigated isoform specificity by measuring the ability of different Arabidopsis 14-3-3 isoforms to activate the H+-ATPase. We observed that GF14 isoforms of the non-ε group were more effective than ε group isoforms in the interaction with the H+-ATPase and in the stimulation of its activity. Kinetic and thermodynamic parameters of the binding of GF14ε and GF14ω isoforms, representative of ε and non-ε groups respectively, with the H+-ATPase, have been determined by Surface Plasmon Resonance analysis demonstrating that the higher affinity of GF14ω is mainly due to slower dissociation. The role of the C-terminal region and of a Gly residue located in the loop 8 and conserved in all non-ε isoforms has also been studied by deletion and site-specific mutagenesis. The C-terminal domains, despite their high divergence, play an auto-inhibitory role in both isoforms and they, in addition to a specific residue located in the loop 8, contribute to isoform specificity. To investigate the generality of these findings, we have used the SPOT-synthesis technology to array a number of phosphopeptides matching known or predicted 14-3-3 binding sites present in a number of clients. The results of this approach confirmed isoform specificity in the recognition of several target peptides, suggesting that the isoform specificity may have an impact on the modulation of a variety of additional protein activities, as suggested by probing of a phosphopeptide array with members of the two 14-3-3 groups.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
14-3-3 protein
Pallucca, R., Visconti, S., Camoni, L., Cesareni, G., Melino, S.m., Panni, S., et al. (2014). Specificity of ε and non-ε isoforms of Arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLOS ONE, 9(3), 90764 [doi: 10.1371/journal.pone.0090764].
Pallucca, R; Visconti, S; Camoni, L; Cesareni, G; Melino, Sm; Panni, S; Torreri, P; Aducci, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Pallucca et al 2014 PlosOne.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/84869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact