To generate a robust predictive model of Early (3 months) Graft Loss after liver transplantation, we used a Bayesian approach to combine evidence from a prospective European cohort (Liver-Match) and the United Network for Organ Sharing registry.
Angelico, M., Nardi, A., Romagnoli, R., Marianelli, T., Corradini, S., Tandoi, F., et al. (2014). A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the Liver Match study. DIGESTIVE AND LIVER DISEASE, 46(4), 340-347 [10.1016/j.dld.2013.11.004].
A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the Liver Match study
ANGELICO, MARIO;NARDI, ALESSANDRA;
2014-01-09
Abstract
To generate a robust predictive model of Early (3 months) Graft Loss after liver transplantation, we used a Bayesian approach to combine evidence from a prospective European cohort (Liver-Match) and the United Network for Organ Sharing registry.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Dream DLD.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
770.12 kB
Formato
Adobe PDF
|
770.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.