In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem: v⋅∇ x F=1 K n Q(F,F),(x,v)∈Ω×R 3 ,(0.1) v · ∇ x F = 1 K n Q ( F , F ) , ( x , v ) ∈ Ω × R 3 , ( 0.1 ) F(x,v)| n(x)⋅v<0 =μ θ ∫ n(x)⋅v ′ >0 F(x,v ′ )(n(x)⋅v ′ )dv ′ ,x∈∂Ω,(0.2) F ( x , v ) | n ( x ) · v < 0 = μ θ ∫ n ( x ) · v ′ > 0 F ( x , v ′ ) ( n ( x ) · v ′ ) d v ′ , x ∈ ∂ Ω , ( 0.2 ) where Ω is a bounded domain in R d ,1≤d≤3 R d , 1 ≤ d ≤ 3 , Kn is the Knudsen number and μ θ =1 2πθ 2 (x) exp[−∣ ∣ v∣ ∣ 2 2θ(x) ] μ θ = 1 2 π θ 2 ( x ) exp [ - | v | 2 2 θ ( x ) ] is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for |θ−θ 0 |≤δ≪1 | θ - θ 0 | ≤ δ ≪ 1 and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion F s =μ θ 0 +δF 1 +O(δ 2 ) F s = μ θ 0 + δ F 1 + O ( δ 2 ) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.

Esposito, R., Guo, Y., Kim, C., Marra, R. (2013). Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 323, 177-239 [10.1007/s00220-013-1766-2].

Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law.

MARRA, ROSSANA
2013-01-01

Abstract

In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem: v⋅∇ x F=1 K n Q(F,F),(x,v)∈Ω×R 3 ,(0.1) v · ∇ x F = 1 K n Q ( F , F ) , ( x , v ) ∈ Ω × R 3 , ( 0.1 ) F(x,v)| n(x)⋅v<0 =μ θ ∫ n(x)⋅v ′ >0 F(x,v ′ )(n(x)⋅v ′ )dv ′ ,x∈∂Ω,(0.2) F ( x , v ) | n ( x ) · v < 0 = μ θ ∫ n ( x ) · v ′ > 0 F ( x , v ′ ) ( n ( x ) · v ′ ) d v ′ , x ∈ ∂ Ω , ( 0.2 ) where Ω is a bounded domain in R d ,1≤d≤3 R d , 1 ≤ d ≤ 3 , Kn is the Knudsen number and μ θ =1 2πθ 2 (x) exp[−∣ ∣ v∣ ∣ 2 2θ(x) ] μ θ = 1 2 π θ 2 ( x ) exp [ - | v | 2 2 θ ( x ) ] is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for |θ−θ 0 |≤δ≪1 | θ - θ 0 | ≤ δ ≪ 1 and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion F s =μ θ 0 +δF 1 +O(δ 2 ) F s = μ θ 0 + δ F 1 + O ( δ 2 ) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.
2013
In corso di stampa
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Esposito, R., Guo, Y., Kim, C., Marra, R. (2013). Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 323, 177-239 [10.1007/s00220-013-1766-2].
Esposito, R; Guo, Y; Kim, C; Marra, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
65-EGKM.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/79628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 82
social impact