Context. Broad absorption lines indicate gas outflows with velocities from thousands of km s-1 to about 0.2 the speed of light, which may be present in all quasars and may play a major role in the evolution of the host galaxy. The variability of absorption patterns can provide information on changes in the density and velocity distributions of the absorbing gas and its ionisation status. Aims. We want to accurately follow the evolution in time of the luminosity and both the broad and narrow C IV absorption features of an individual object, the quasar APM 08279+5255, and analyse the correlations among these quantities. Methods. We have collected 23 photometrical and spectro-photometrical observations at the 1.82 m Telescope of the Asiago Observatory since 2003, plus 5 other spectra from the literature. We analysed the evolution in time of the equivalent width of the broad absorption feature and two narrow absorption systems, the correlation among them and with the R band magnitude. We performed a structure function analysis of the equivalent width variations. Results. We present an unprecedented monitoring of a broad absorption line quasar based on 28 epochs during 14 years. The shape of broad absorption feature shows relative stability, while its equivalent width slowly declines until it sharply increases during 2011. At the same time, the R magnitude stays almost constant until it sharply increases during 2011. The equivalent width of the narrow absorption redwards of the systemic redshift only shows a decline. Conclusions. The broad absorption behaviour suggests changes in the ionisation status as the main cause of variability. We show for the first time a correlation of this variability with the R band flux. The different behaviour of the narrow absorption system might be due to recombination time delay. The structure function of the absorption variability has a slope comparable with typical optical variability of quasars. This is consistent with variations of the 200 Å ionising flux originating in the inner part of the accretion disk.
Trevese, D., Saturni, F., Vagnetti, F., Perna, M., Paris, D., Turriziani, S. (2013). A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255: I. C IV absorption variability. ASTRONOMY & ASTROPHYSICS, 557 [10.1051/0004-6361/201321864].
A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255: I. C IV absorption variability
VAGNETTI, FAUSTO;
2013-01-01
Abstract
Context. Broad absorption lines indicate gas outflows with velocities from thousands of km s-1 to about 0.2 the speed of light, which may be present in all quasars and may play a major role in the evolution of the host galaxy. The variability of absorption patterns can provide information on changes in the density and velocity distributions of the absorbing gas and its ionisation status. Aims. We want to accurately follow the evolution in time of the luminosity and both the broad and narrow C IV absorption features of an individual object, the quasar APM 08279+5255, and analyse the correlations among these quantities. Methods. We have collected 23 photometrical and spectro-photometrical observations at the 1.82 m Telescope of the Asiago Observatory since 2003, plus 5 other spectra from the literature. We analysed the evolution in time of the equivalent width of the broad absorption feature and two narrow absorption systems, the correlation among them and with the R band magnitude. We performed a structure function analysis of the equivalent width variations. Results. We present an unprecedented monitoring of a broad absorption line quasar based on 28 epochs during 14 years. The shape of broad absorption feature shows relative stability, while its equivalent width slowly declines until it sharply increases during 2011. At the same time, the R magnitude stays almost constant until it sharply increases during 2011. The equivalent width of the narrow absorption redwards of the systemic redshift only shows a decline. Conclusions. The broad absorption behaviour suggests changes in the ionisation status as the main cause of variability. We show for the first time a correlation of this variability with the R band flux. The different behaviour of the narrow absorption system might be due to recombination time delay. The structure function of the absorption variability has a slope comparable with typical optical variability of quasars. This is consistent with variations of the 200 Å ionising flux originating in the inner part of the accretion disk.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.