Recent evidence regarding the role of regulatory T cells (Treg) in tumor development has suggested that the manipulation of Treg function selectively in the tumor microenvironment would be a desirable immunotherapy approach. Targeting intratumor immune populations would reduce side effects on peripheral healthy cells and increase antitumor efficacy of immunotherapies. However, no current approaches are available which enable selective in vivo targeting of intratumor Treg or other immune cell subpopulations. Herein, we investigated the ability of ligands against Treg-specific receptors to drive selective internalization of PEGmodified single-walled carbon nanotubes (PEG-SWCNTs) into Treg residing in the tumor microenvironment. We focused our attention on the glucocorticoid-induced TNFR-related receptor (GITR), as it showed higher overexpression on intratumor vs peripheral (i.e., splenic) Treg compared to other reported Treg-specific markers (folate receptor 4, CD103, and CD39). Ex vivo investigations showed that the Treg targeting efficiency and selectivity of PEG-SWCNTs depended on incubation time, dose, number of ligands per nanotube, and targeted surface marker. In vivo investigations showed that PEG-SWCNTs armed with GITR ligands targeted Treg residing in a B16 melanoma more efficiently then intratumor non-Treg or splenic Treg. The latter result was achieved by exploiting a combination of passive tumor targeting due to enhanced tumor vascular permeability, naturally increased intratumor Treg vs effector T cell (Teff) ratio, and active targeting of markers that are enriched in intratumor vs splenic Treg. We also found that PEG-SWCNTs loaded with GITR ligands were internalized by Treg through receptor-mediated endocytosis and transported into the cytoplasm and nucleus ex vivo and in vivo. This is the first example of intratumor immune cell targeting and we hope it will pave the way to innovative immunotherapies against cancer.

Sacchetti, C., Rapini, N., Magrini, A., Cirelli, E., Bellucci, S., Mattei, M., et al. (2013). In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. BIOCONJUGATE CHEMISTRY, 24(6), 852-858 [10.1021/bc400070q].

In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes

Sacchetti, C;Rapini, N;Magrini, A;Cirelli, E;Mattei, M;Rosato, N;Bottini, N;Bottini, M
2013-01-01

Abstract

Recent evidence regarding the role of regulatory T cells (Treg) in tumor development has suggested that the manipulation of Treg function selectively in the tumor microenvironment would be a desirable immunotherapy approach. Targeting intratumor immune populations would reduce side effects on peripheral healthy cells and increase antitumor efficacy of immunotherapies. However, no current approaches are available which enable selective in vivo targeting of intratumor Treg or other immune cell subpopulations. Herein, we investigated the ability of ligands against Treg-specific receptors to drive selective internalization of PEGmodified single-walled carbon nanotubes (PEG-SWCNTs) into Treg residing in the tumor microenvironment. We focused our attention on the glucocorticoid-induced TNFR-related receptor (GITR), as it showed higher overexpression on intratumor vs peripheral (i.e., splenic) Treg compared to other reported Treg-specific markers (folate receptor 4, CD103, and CD39). Ex vivo investigations showed that the Treg targeting efficiency and selectivity of PEG-SWCNTs depended on incubation time, dose, number of ligands per nanotube, and targeted surface marker. In vivo investigations showed that PEG-SWCNTs armed with GITR ligands targeted Treg residing in a B16 melanoma more efficiently then intratumor non-Treg or splenic Treg. The latter result was achieved by exploiting a combination of passive tumor targeting due to enhanced tumor vascular permeability, naturally increased intratumor Treg vs effector T cell (Teff) ratio, and active targeting of markers that are enriched in intratumor vs splenic Treg. We also found that PEG-SWCNTs loaded with GITR ligands were internalized by Treg through receptor-mediated endocytosis and transported into the cytoplasm and nucleus ex vivo and in vivo. This is the first example of intratumor immune cell targeting and we hope it will pave the way to innovative immunotherapies against cancer.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
Sacchetti, C., Rapini, N., Magrini, A., Cirelli, E., Bellucci, S., Mattei, M., et al. (2013). In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. BIOCONJUGATE CHEMISTRY, 24(6), 852-858 [10.1021/bc400070q].
Sacchetti, C; Rapini, N; Magrini, A; Cirelli, E; Bellucci, S; Mattei, M; Rosato, N; Bottini, N; Bottini, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Bioconj Chem 2013 VQR Bottini 2.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/79292
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 80
social impact