Abstract We present a new list of solar photospheric lines in the near-infrared (NIR) region obtained by synthesis under local thermodynamic equilibrium (LTE) approximation. We give novel velocity and temperature response functions (RFs) for 77 lines over the spectral range 800 - 1400 nm. Using these RFs, we are able to obtain for each line the core formation height and the range of atmospheric layers where thermodynamic perturbations are dominant. Moreover, by using the depth-integrated RFs, we give an indication of the dependence on the wavelength of the RFs and quantify their sensitivity to thermodynamic variations. The NIR region represents a significant source of interest for spectroscopic and polarimetric studies. Indeed, at these wavelengths we explore the deeper photospheric layers, and the Zeeman splitting is larger than in the visible range. Several research fields in solar astrophysics ( e.g., photospheric and chromospheric dynamics, magnetoconvection in active regions, and interaction between solar plasma and magnetic field) should benefit from using this new line list. Moreover, various new NIR instruments are planned for future space missions or next generation ground-based solar telescopes, such as the European Solar Telescope (EST) or the Advanced Technology Solar Telescope (ATST).

Penza, V., Berrilli, F. (2012). Velocity and Temperature Response Functions of 77 Near-Infrared (800 - 1400 nm) Photospheric Lines - I. SOLAR PHYSICS, 277(2), .227-243 [10.1007/s11207-011-9916-1].

Velocity and Temperature Response Functions of 77 Near-Infrared (800 - 1400 nm) Photospheric Lines - I

BERRILLI, FRANCESCO
2012-01-01

Abstract

Abstract We present a new list of solar photospheric lines in the near-infrared (NIR) region obtained by synthesis under local thermodynamic equilibrium (LTE) approximation. We give novel velocity and temperature response functions (RFs) for 77 lines over the spectral range 800 - 1400 nm. Using these RFs, we are able to obtain for each line the core formation height and the range of atmospheric layers where thermodynamic perturbations are dominant. Moreover, by using the depth-integrated RFs, we give an indication of the dependence on the wavelength of the RFs and quantify their sensitivity to thermodynamic variations. The NIR region represents a significant source of interest for spectroscopic and polarimetric studies. Indeed, at these wavelengths we explore the deeper photospheric layers, and the Zeeman splitting is larger than in the visible range. Several research fields in solar astrophysics ( e.g., photospheric and chromospheric dynamics, magnetoconvection in active regions, and interaction between solar plasma and magnetic field) should benefit from using this new line list. Moreover, various new NIR instruments are planned for future space missions or next generation ground-based solar telescopes, such as the European Solar Telescope (EST) or the Advanced Technology Solar Telescope (ATST).
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Con Impact Factor ISI
Spectral line, Spectral synthesis, Solar photosphere
http://link.springer.com/article/10.1007%2Fs11207-011-9916-1
Penza, V., Berrilli, F. (2012). Velocity and Temperature Response Functions of 77 Near-Infrared (800 - 1400 nm) Photospheric Lines - I. SOLAR PHYSICS, 277(2), .227-243 [10.1007/s11207-011-9916-1].
Penza, V; Berrilli, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/78565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact