Time-domain filtering is a standard analysis technique, which is used to disentangle the two main vector components of the distortion product otoacoustic emission response, exploiting their different phase-frequency relation. In this study, a time-frequency filtering technique based on the continuous wavelet transform is proposed to overcome the intrinsic limitations of the time-domain filtering technique and to extend it also to the analysis of stimulus-frequency and transient-evoked otoacoustic emissions. The advantages of the proposed technique are first discussed on a theoretical basis, then practically demonstrated by applying it technique to the analysis of synthesized and real otoacoustic data. The results show that the time-frequency approach can be empirically optimized to get effective separation of the components of the otoacoustic response associated with either different generation mechanisms or different generation places. Focusing on a single component of the otoacoustic response with a given time-frequency signature may also improve significantly the signal-to-noise ratio, because the random noise contribution tends to be uniformly distributed on the time-frequency plane.
Moleti, A., Longo, F., Sisto, R. (2012). Time-frequency domain filtering of evoked otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 132(4), 2455-2467 [10.1121/1.4751537].
Time-frequency domain filtering of evoked otoacoustic emissions
MOLETI, ARTURO;
2012-01-01
Abstract
Time-domain filtering is a standard analysis technique, which is used to disentangle the two main vector components of the distortion product otoacoustic emission response, exploiting their different phase-frequency relation. In this study, a time-frequency filtering technique based on the continuous wavelet transform is proposed to overcome the intrinsic limitations of the time-domain filtering technique and to extend it also to the analysis of stimulus-frequency and transient-evoked otoacoustic emissions. The advantages of the proposed technique are first discussed on a theoretical basis, then practically demonstrated by applying it technique to the analysis of synthesized and real otoacoustic data. The results show that the time-frequency approach can be empirically optimized to get effective separation of the components of the otoacoustic response associated with either different generation mechanisms or different generation places. Focusing on a single component of the otoacoustic response with a given time-frequency signature may also improve significantly the signal-to-noise ratio, because the random noise contribution tends to be uniformly distributed on the time-frequency plane.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.