FtsQ, an essential protein for the Escherichia coli divisome assembly, is able to interact with various division proteins, namely FtsI, FtsL, FtsN, FtsB and FtsW. In this paper, the FtsQ domains involved in these interactions were identified by two-hybrid assays and co-immunoprecipitations. Progressive deletions of the ftsQ gene suggested that the FtsQ self-interaction and its interactions with the other proteins are localized in three periplasmic subdomains: (i) residues 50-135 constitute one of the sites involved in FtsQ, FtsI and FtsN interaction, and this site is also responsible for FtsW interaction; (ii) the FtsB interaction is localized between residues 136 and 202; and (iii) the FtsL interaction is localized at the very C-terminal extremity. In this third region, the interaction site for FtsK and also the second site for FtsQ, FtsI, FtsN interactions are located. As far as FtsW is concerned, this protein interacts with the fragment of the FtsQ periplasmic domain that spans residues 67-75. In addition, two protein subdomains, one constituted by residues 1-135 and the other from 136 to the end, are both able to complement an ftsQ null mutant. Finally, the unexpected finding that an E. coli ftsQ null mutant can be complemented, at least transiently, by the Streptococcus pneumoniae divIB/ftsQ gene product suggests a new strategy for investigating the biological significance of protein-protein interactions In the second part of my job to clarify the function of DivIVA in Streptococcus pneumoniae, we localized this protein in exponentially growing cells by both immunofluorescence microscopy and immunoelectron microscopy and found that S. pneumoniae DivIVA (DivIVA(SPN)) had a unique localization profile: it was present simultaneously both as a ring at the division septum and as dots at the cell poles. Double-immunofluorescence analysis suggested that DivIVA is recruited to the septum at a later stage than FtsZ and is retained at the poles after cell separation. All the other cell division proteins that we tested were localized in the divIVA null mutant, although the percentage of cells having constricted Z rings was significantly reduced. In agreement with its localization profile and consistent with its coiled-coil nature, DivIVA interacted with itself and with a number of known or putative S. pneumoniae cell division proteins. Finally, a missense divIVA mutant, obtained by allelic replacement, allowed us to correlate, at the molecular level, the specific interactions and some of the facets of the divIVA mutant phenotype. Taken together, the results suggest that although the possibility of a direct role in chromosome segregation cannot be ruled out, DivIVA in S. pneumoniae seems to be primarily involved in the formation and maturation of the cell poles. The localization and the interaction properties of DivIVA(SPN) raise the intriguing possibility that a common, MinCD-independent function evolved differently in the various host backgrounds

D’Ulisse, V. (2009). Studio della rete d’interazioni delle proteine di divisione dei procarioti: identificazione del minimum comune divisoma.

Studio della rete d’interazioni delle proteine di divisione dei procarioti: identificazione del minimum comune divisoma

D'ULISSE, VALERIA
2009-02-02

Abstract

FtsQ, an essential protein for the Escherichia coli divisome assembly, is able to interact with various division proteins, namely FtsI, FtsL, FtsN, FtsB and FtsW. In this paper, the FtsQ domains involved in these interactions were identified by two-hybrid assays and co-immunoprecipitations. Progressive deletions of the ftsQ gene suggested that the FtsQ self-interaction and its interactions with the other proteins are localized in three periplasmic subdomains: (i) residues 50-135 constitute one of the sites involved in FtsQ, FtsI and FtsN interaction, and this site is also responsible for FtsW interaction; (ii) the FtsB interaction is localized between residues 136 and 202; and (iii) the FtsL interaction is localized at the very C-terminal extremity. In this third region, the interaction site for FtsK and also the second site for FtsQ, FtsI, FtsN interactions are located. As far as FtsW is concerned, this protein interacts with the fragment of the FtsQ periplasmic domain that spans residues 67-75. In addition, two protein subdomains, one constituted by residues 1-135 and the other from 136 to the end, are both able to complement an ftsQ null mutant. Finally, the unexpected finding that an E. coli ftsQ null mutant can be complemented, at least transiently, by the Streptococcus pneumoniae divIB/ftsQ gene product suggests a new strategy for investigating the biological significance of protein-protein interactions In the second part of my job to clarify the function of DivIVA in Streptococcus pneumoniae, we localized this protein in exponentially growing cells by both immunofluorescence microscopy and immunoelectron microscopy and found that S. pneumoniae DivIVA (DivIVA(SPN)) had a unique localization profile: it was present simultaneously both as a ring at the division septum and as dots at the cell poles. Double-immunofluorescence analysis suggested that DivIVA is recruited to the septum at a later stage than FtsZ and is retained at the poles after cell separation. All the other cell division proteins that we tested were localized in the divIVA null mutant, although the percentage of cells having constricted Z rings was significantly reduced. In agreement with its localization profile and consistent with its coiled-coil nature, DivIVA interacted with itself and with a number of known or putative S. pneumoniae cell division proteins. Finally, a missense divIVA mutant, obtained by allelic replacement, allowed us to correlate, at the molecular level, the specific interactions and some of the facets of the divIVA mutant phenotype. Taken together, the results suggest that although the possibility of a direct role in chromosome segregation cannot be ruled out, DivIVA in S. pneumoniae seems to be primarily involved in the formation and maturation of the cell poles. The localization and the interaction properties of DivIVA(SPN) raise the intriguing possibility that a common, MinCD-independent function evolved differently in the various host backgrounds
2-feb-2009
A.A. 2006/2007
Biologia cellulare e molecolare
19.
proteine di divisione; saggio di doppio ibrido procariotico; coimmunoprecipitazioni; escherichia coli; streptococcus pneumoniae coimmunoprecipitazioni; escherichia coli; streptococcus pneumoniae
Settore BIO/11 - BIOLOGIA MOLECOLARE
Italian
Tesi di dottorato
D’Ulisse, V. (2009). Studio della rete d’interazioni delle proteine di divisione dei procarioti: identificazione del minimum comune divisoma.
File in questo prodotto:
File Dimensione Formato  
TESI DOTTORATO D'ULISSE.pdf

accesso aperto

Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact