AIMS/HYPOTHESIS: Pioglitazone (PIO) is a peroxisome proliferator-activated receptor (PPAR)γ agonist insulin-sensitiser with anti-inflammatory and anti-atherosclerotic effects. Our objective was to evaluate the effect of low-dose PIO (15 mg/day) on glucose metabolism and inflammatory state in obese individuals with type 2 diabetes. METHODS: A randomised, double-blind, placebo-controlled, mechanistic trial was conducted on 29 patients with type 2 diabetes treated with metformin and/or sulfonylurea. They were randomised to receive PIO or placebo (PLC) for 6 months, in a 1:1 ratio. Participants were allocated to interventions by central office. All study participants, investigators and personnel performing measurements were blinded to group assignment. At baseline and after 6 months patients underwent: (1) OGTT; (2) muscle biopsy to evaluate expression of TNF-α, tissue inhibitor of metalloproteases 3 (TIMP-3) levels, TNF-α converting enzyme (TACE) expression and enzymatic activity; (3) euglycaemic-hyperinsulinaemic clamp; (4) measurement of plasma high-sensitivity C-reactive protein (hsCRP), plasminogen activator inhibitor type-1 (PAI-1), TNF-α, IL-6, monocyte chemotactic protein-1 (MCP-1), adiponectin and fractalkine (FRK). The interventions were PIO 15 mg/day vs placebo and the main outcomes measured were absolute changes in whole-body insulin sensitivity, insulin secretion and inflammatory state. RESULTS: Fifteen participants were randomized to receive PIO and 14 participants were randomized to receive PLC. Eleven participants completed the study in the PIO group and nine participants completed the study in the PLC group and were analysed. Fasting plasma glucose and HbA1c decreased modestly (p < 0.05) after PIO and did not change after PLC. M/I (insulin-stimulated whole-body glucose disposal), adipose tissue insulin resistance (IR) index, insulin secretion/IR (disposition) index and insulinogenic index improved significantly after PIO, but not after PLC. Circulating MCP-1, IL-6, FRK, hsCRP and PAI-1 levels decreased in PIO- as compared with PLC-treated patients, while TNF-α did not change. TNF-α protein expression and TACE enzymatic activity in muscle were significantly reduced by PIO but not PLC. Adiponectin levels increased significantly after PIO as compared with PLC treatment. Given that the mean TACE enzymatic activity level at baseline in the PIO group was 0.29 ± 0.07 (fluorescence units [FU]), and at end of study decreased to 0.05 vs 0.14 in the PLC group, the power to reject the null hypothesis that the population means of the PIO and PLC groups are equal after 6 months is greater than 0.80. Given that M/I was 2.41 ± 0.35 μmol kg(-1) min(-1) (pmol/l)(-1) at baseline and increased by 0.55 in the PIO and 0.17 in the PLC groups, the power to reject the null hypothesis that the population means of the PIO and PLC groups are equal after 6 months is greater than 0.85. The type I error probability associated with this test of this null hypothesis is 0.05. No serious adverse events occurred in either group.

Tripathy, D., Daniele, G., Fiorentino, T., Perez Cadena, Z., Chavez Velasquez, A., Kamath, S., et al. (2013). Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3-TACE dyad in type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled, mechanistic study. DIABETOLOGIA, 56(10), 2153-2163 [10.1007/s00125-013-2976-z].

Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3-TACE dyad in type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled, mechanistic study.

FEDERICI, MASSIMO;
2013-01-01

Abstract

AIMS/HYPOTHESIS: Pioglitazone (PIO) is a peroxisome proliferator-activated receptor (PPAR)γ agonist insulin-sensitiser with anti-inflammatory and anti-atherosclerotic effects. Our objective was to evaluate the effect of low-dose PIO (15 mg/day) on glucose metabolism and inflammatory state in obese individuals with type 2 diabetes. METHODS: A randomised, double-blind, placebo-controlled, mechanistic trial was conducted on 29 patients with type 2 diabetes treated with metformin and/or sulfonylurea. They were randomised to receive PIO or placebo (PLC) for 6 months, in a 1:1 ratio. Participants were allocated to interventions by central office. All study participants, investigators and personnel performing measurements were blinded to group assignment. At baseline and after 6 months patients underwent: (1) OGTT; (2) muscle biopsy to evaluate expression of TNF-α, tissue inhibitor of metalloproteases 3 (TIMP-3) levels, TNF-α converting enzyme (TACE) expression and enzymatic activity; (3) euglycaemic-hyperinsulinaemic clamp; (4) measurement of plasma high-sensitivity C-reactive protein (hsCRP), plasminogen activator inhibitor type-1 (PAI-1), TNF-α, IL-6, monocyte chemotactic protein-1 (MCP-1), adiponectin and fractalkine (FRK). The interventions were PIO 15 mg/day vs placebo and the main outcomes measured were absolute changes in whole-body insulin sensitivity, insulin secretion and inflammatory state. RESULTS: Fifteen participants were randomized to receive PIO and 14 participants were randomized to receive PLC. Eleven participants completed the study in the PIO group and nine participants completed the study in the PLC group and were analysed. Fasting plasma glucose and HbA1c decreased modestly (p < 0.05) after PIO and did not change after PLC. M/I (insulin-stimulated whole-body glucose disposal), adipose tissue insulin resistance (IR) index, insulin secretion/IR (disposition) index and insulinogenic index improved significantly after PIO, but not after PLC. Circulating MCP-1, IL-6, FRK, hsCRP and PAI-1 levels decreased in PIO- as compared with PLC-treated patients, while TNF-α did not change. TNF-α protein expression and TACE enzymatic activity in muscle were significantly reduced by PIO but not PLC. Adiponectin levels increased significantly after PIO as compared with PLC treatment. Given that the mean TACE enzymatic activity level at baseline in the PIO group was 0.29 ± 0.07 (fluorescence units [FU]), and at end of study decreased to 0.05 vs 0.14 in the PLC group, the power to reject the null hypothesis that the population means of the PIO and PLC groups are equal after 6 months is greater than 0.80. Given that M/I was 2.41 ± 0.35 μmol kg(-1) min(-1) (pmol/l)(-1) at baseline and increased by 0.55 in the PIO and 0.17 in the PLC groups, the power to reject the null hypothesis that the population means of the PIO and PLC groups are equal after 6 months is greater than 0.85. The type I error probability associated with this test of this null hypothesis is 0.05. No serious adverse events occurred in either group.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/49 - SCIENZE TECNICHE DIETETICHE APPLICATE
English
Con Impact Factor ISI
Tripathy, D., Daniele, G., Fiorentino, T., Perez Cadena, Z., Chavez Velasquez, A., Kamath, S., et al. (2013). Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3-TACE dyad in type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled, mechanistic study. DIABETOLOGIA, 56(10), 2153-2163 [10.1007/s00125-013-2976-z].
Tripathy, D; Daniele, G; Fiorentino, T; Perez Cadena, Z; Chavez Velasquez, A; Kamath, S; Fanti, P; Jenkinson, C; Andreozzi, F; Federici, M; Gastaldell...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
pio_muscle.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 384.38 kB
Formato Adobe PDF
384.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/77350
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 61
social impact